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Advances in experimental, data collection, and analysis methods have brought popula-
tion variability in psychological phenomena to the fore. Yet, current practices for inter-
preting such heterogeneity do not appropriately treat the uncertainty inevitable in any
statistical summary. Heterogeneity is best thought of as a distribution of features with a
mean (average person’s effect) and variance (between-person differences). This expected
heterogeneity distribution can be further summarized e.g. as a heterogeneity interval
(Bolger et al., 2019). However, because empirical studies estimate the underlying mean
and variance parameters with uncertainty, the expected distribution and interval will
underestimate the actual range of plausible effects in the population. Using Bayesian
hierarchical models, and with the aid of empirical datasets from social and cognitive
psychology, we provide a walk-through of effective heterogeneity reporting and display
tools that appropriately convey measures of uncertainty. We cover interval, proportion,
and ratio measures of heterogeneity and their estimation and interpretation. These tools
can be a spur to theory building, allowing researchers to widen their focus from popu-
lation averages to population heterogeneity in psychological phenomena.
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When building and testing theories, psychologists have long focused on asking whether an
effect exists and what its magnitude might be. Yet, establishing that an independent variable
affects a dependent variable, possibly to some specific extent, may not be a sufficient descrip-
tion of the phenomenon if the effect varies appreciably from one treatment unit (e.g. person)
to another. The relevance of such variation in the effect, or heterogeneity, for theory develop-
ment is recognized yet typically insufficiently described in the empirical literature (Bolger et
al., 2019; Brand & Thomas, 2013; Grice et al., 2020; Richters, 2021).

One reason for the scarcity of reporting and sufficiently interpreting heterogeneity is that
psychologists still commonly analyze data with models that obscure its assessment, such as
traditional ANOVA (Bolger et al., 2019). However, more informative modeling is not the only
challenge: Although more informative hierarchical (or multilevel, mixed-effects (Gelman &
Hill, 2007)) models are becoming widespread, many users do not yet have the conceptual and
practical tools to benefit from the greater explanatory power such models afford.

When person-to-person variability is modeled and reported, those descriptions often focus
on point estimates (Bolger et al., 2019), sample statistics (Beyens et al., 2020; Grice et al., 2020;
Vuorre et al., 2022), graphical displays that don’t yield numerical estimates of hypothetical
data-generating mechanisms (Beck & Jackson, 2022), or quantities such as the standard devi-
ation of person-specific parameters (Bartoš et al., 2023). These, as we will show, provide an in-
complete picture of variation that is sometimes difficult to interpret: If (e.g.) a treatment effect
is found for 60% or participants in a sample but the uncertainty inherent in that percentage is
not communicated, we cannot make inferential conclusions about the effect’s prevalence in
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the population. Therefore, to communicate heterogeneity effectively we need not only mean-
ingful measures of it, but also effective methods for describing the associated uncertainties.
Our goal in this paper is to address this challenge by illustrating measures of heterogeneity
and how to communicate them, both numerically and graphically, in ways that take uncer-
tainty into account.

Our plan is as follows. First, we review established methods for estimating and communicat-
ing expected heterogeneity of causal effects in the population using an example dataset from
social psychology. We then describe additional ways in which model parameters can be trans-
formed to describe distributions of causal effects. We review the concepts and computations
underlying three heterogeneity metrics: The effect’s mean and standard deviation in the pop-
ulation; the heterogeneity interval; and the prevalence proportion. Second, we move beyond
summarizing expected degrees of heterogeneity that lack information about uncertainty to
describing distributions of plausible degrees of heterogeneity. Such uncertainty distributions
of population feature distributions are natural components of Bayesian hierarchical models
and afford efficient tools for describing distributional uncertainty. Finally, we extend these
methods to compare heterogeneity across different populations using an example dataset
from cognitive psychology. We present the computational notebook supporting this manu-
script as an online supplement at https://mvuorre.github.io/heterogeneity-uncertainty.

1. Review of heterogeneity

To begin our exposition, we reproduce the analyses presented in Bolger et al. (2019). In their
study, which replicated findings first presented in Scholer et al. (2014), 62 participants saw
twenty positively and twenty negatively valenced words, and judged whether each word was
self-descriptive or not. Because most people are typically motivated to view themselves pos-
itively, Bolger et al. (2019) predicted that responses to positively valenced words would be
faster than to negatively valenced words (Scholer et al., 2014).

1.1. Model 1

In this section, we replicate Bolger et al. (2019)’s analysis, using their openly available data.
We first wrangled the data as in Bolger et al. (2019), which led to a sample of 1,321 trials
from 59 participants that were endorsed as self-descriptive. Our online analysis supplement
(https://osf.io/yp2gq) includes the complete code to reproduce this manuscript and computa-
tions therein. We show a sample of these data in Table 1.

Table 1:  First six rows of example dataset 1 (Bolger et al., 2019).

Per-
son

Trial Valence Log(reaction time)

01 1 Positive 7.2

01 4 Positive 6.9

01 8 Positive 6.9

01 10 Positive 6.5

01 11 Positive 6.5

01 12 Positive 7.1

https://osf.io/yp2gq
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Then, we estimated the same statistical model (Equation 1 - Equation 3). We modeled the log-
transformed reaction time of person 𝑗 on trial 𝑖 as a random draw from a normal distribution
with mean 𝜂 (eta), which could differ between trials 𝑖 and individuals 𝑗, and standard devia-
tion 𝜎 (sigma), which we assumed constant across individuals and trials as indicated by the
lack of subscripts:

logRT𝑖𝑗 ∼ Normal (𝜂𝑖𝑗, 𝜎2). (1)

(We recognize that there are better alternatives to modeling the log-transformed RTs as nor-
mal, but those are outside the scope of this manuscript.) Then, we specified a model of the
mean of the logRT distribution (𝜂𝑖𝑗) such that the regression coefficients captured our sub-
stantive questions:

𝜂𝑖𝑗 = 𝛽0 + 𝛾0𝑗 + (𝛽1 + 𝛾1𝑗)V𝑖𝑗. (2)

This equation includes two sets of parameters: The first set contains 𝛽0 (beta), the intercept,
and 𝛽1, the slope or effect of valence (V). Parameters in this set do not have subscripts: In the
frequentist tradition, they are considered constants—not modelled on covariates—and typi-
cally referred to as “fixed” parameters (e.g. Raudenbush & Bryk, 2002). The second set of pa-
rameters, 𝛾0𝑗 (gamma) and 𝛾1𝑗, have the subscript 𝑗 to indicate that they are person-specific
deviations from the average intercept and slope, respectively. That is, 𝛽0 + 𝛾01 is the intercept
(average log reaction time) for person 𝑗 = 1. In frequentist texts, these are typically called
“random” parameters because they are modeled as varying randomly according to a specified
distribution. Following standard multilevel modeling assumptions, we model 𝛾0 and 𝛾1 as
multivariate normal distributed:

[
𝛾0
𝛾1

] ∼ MVN ([0
0], (

𝜏0
𝜌 𝜏1

)). (3)

In this equation, we assume that the person-specific deviations 𝛾0 and 𝛾1 have means of zero
(because the means are added to them in #eq-m1-2), standard deviations 𝜏  (tau), and a corre-
lation 𝜌 (rho). Perhaps confusingly, 𝜏s and 𝜌 are also sometimes called random effects because
they describe random (co)variations of the person-specific effects. To be clear, despite this
naming convention they are features of the population, not of any one individual.

What these equations mean substantively is that the extent to which the effect of valence
on logRT varies around the average effect (𝛽1) is estimated by the standard deviation 𝜏1. 𝜏0,
on the other hand, describes the standard deviation of the population of individuals’ average
logRTs across negatively and positively valenced words (intercepts). Moreover, 𝜌 indicates
the extent to which individuals’ average logRTs correlate with how much their logRTs are
affected by valence.

Finally, we contrast coded valence such that negative words were assigned −0.5, and positive
words 0.5. This coding results in an intercept that corresponds to the average reaction time
across negative and positive words, and a slope that reflects the difference in logRT between
negative and positive words.

With data shown in Table 1, we can estimate this model using standard (restricted) maximum
likelihood methods as implemented in, for example, the R package lme4 (Bates et al., 2015; R
Core Team, 2024).
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Table 2:  Parameter estimates from Model 1 (ML).

Parameter Coefficient SE 95% CI

𝛽0 6.87 0.02 [6.82, 6.91]

𝛽1 −0.16 0.02 [−0.20, −0.12]

𝜏0 0.17 0.02 [0.13, 0.20]

𝜏1 0.12 0.02 [0.08, 0.16]

𝜌 −0.07 0.21 [−0.45, 0.35]

𝜎 0.24 0.01 [0.24, 0.25]

We show a conventional summary of this model’s estimated parameters in Table 2. For the
average person, the estimated effect of positive valence on logRT is −0.16 log seconds, with
a 95% confidence interval (CI) extending from −0.20 to −0.12. The estimated standard devia-
tion of valence effects in the population is 0.12 log seconds. The lme4 software package does
not report a standard error or CI for (co)variance parameters by default, and we therefore
calculated it by bootstrapping, using lme4’s confint(..., method = "boot") method. The
resulting 95% bootstrap CI of the valence effect’s standard deviation was [0.08, 0.16].

1.2. Heterogeneity distribution at maximum likelihood estimate of 𝛽1 and 𝜏1

Figure 1:  Heterogeneity distribution of valence effects and various descriptions of their ex-
pected heterogeneity as estimated with Model 1. A. The normal density curve defined by
the point estimates of the valence effect distribution’s mean (𝛽1) and standard deviation (𝜏1).
Shaded areas represent areas under the normal curve within 1 (dark) and 2 (light) standard
deviations of the mean. B. The 90% Heterogeneity Interval as represented by a line segment
with arrows, and the blue shaded area. C. Proportion of negative valence effects in the pop-
ulation (blue). D. Proportion of valence effects in the population that are within the region of

practical equivalence to zero (ROPE; blue).

Rows 2 and 4 in Table 2 define the expected normal distribution of valence effects in the
population, visualized in Figure 1 A. In other words, our point estimate of the distribution
of valence effects is Normal(-0.16, 0.12²). However, this distribution is an incomplete descrip-
tion of heterogeneity for two reasons. First, it does not incorporate uncertainty in the two
determinants of heterogeneity, that is 𝛽1 and 𝜏1: If they are precisely estimated, i.e. when
uncertainty regarding them is negligible, the distribution and any quantities calculated from
it characterize the population well. On the other hand, if they are estimated with consider-
able uncertainty, the distribution or its transformations would not characterize the population
well. We return to this key issue below. Second, the distribution or its parameters do not,
for many purposes, communicate heterogeneity in clear and actionable terms. Below, we in-
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troduce several metrics that directly describe e.g. where a given proportion of the slopes are
expected to fall.

1.3. Interval descriptors

First, we can use the point estimates in Table 2 to construct an expected heterogeneity inter-
val that describes the range within which a certain percentage of the population’s slopes are
expected to fall (Bolger et al., 2019). To do so, we must first determine an appropriate per-
centage to describe: By convention, Bolger et al. (2019) and others have focused on the 95%
heterogeneity interval (𝐻𝐼95). However, because there are already confusingly many quanti-
ties using the five percent cutoff, in this manuscript we focus on 90% heterogeneity interval,
and reserve 95% to descriptions of uncertainty, such as confidence or credibility intervals.
(The appropriate percentage to describe with a heterogeneity interval is determined by the
substantive and communicative aims at hand; for our illustration 90% seemed reasonable.)

Figure 2:  Construction of point estimates of the limits of the heterogeneity interval. While
𝐻𝐼90 can be depicted on the probability density function (PDF; A.), its construction is eas-
ier to depict on the cumulative distribution function (CDF; B.), Φ(𝑥; 𝛽1, 𝜏1). To construct
a 90% heterogeneity interval, we pass 0.05 and 0.95 to the inverse of the CDF: 𝐻𝐼90 =

Φ−1([0.05, 0.95]; 𝛽1, 𝜏1).

To calculate a heterogeneity interval, we first specify the desired probability limits: for a 𝜋%
interval, we use the limits (1 ± 𝜋)/2. Thus, for a 90% interval, we use 0.05 and 0.95, which
together define the central 90% of the distribution. Then, we pass those limits and the esti-
mated mean and standard deviation to the normal quantile function Φ−1 (phi, qnorm() in
R), to get the interval: 𝐻𝐼90 = Φ−1((1 ± 𝜋)/2; 𝛽1, 𝜏1) = Φ−1([.05, .95]; −0.16, 0.12) = [−0.36,
0.04]. In words, this function calculates the 0.05 and 0.95 quantiles of the normal distribution
defined by the point estimates of the mean (𝛽1) and standard deviation (𝜏1): We expect 90% of
valence effects in the population to fall in the [−0.36, 0.04] interval. We illustrate this interval
in Figure 2.

1.4. Proportion descriptors

The above HI summarizes where a given proportion of individuals’ effects in the population
are. In contrast, some applications might find it more informative to summarize proportions
of effects above or below some critical value, or within some critical range. For example, we
might ask “What proportion of individuals in the population endorse faster to positively va-
lenced words?” In other words, we ask a question of prevalence: What proportion of the het-
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erogeneity distribution is below zero? We label this quantity 𝑝− for proportion of population
with negative effects.

Figure 3:  Construction of the point estimate of the proportion of negative effects. A. While
𝑝− can be depicted on the probability density function (PDF), B. its construction is easier to

depict on the cumulative distribution function (CDF): 𝑝− = Φ(0; 𝛽1, 𝜏1).

To answer, we pass zero (the critical value) and the estimated mean and standard deviation to
the normal cumulative distribution function (Φ; pnorm() in R): 𝑝− = 𝑃𝑟(Valence effect ≤
0) = Φ(0; 𝛽1, 𝜏1) = Φ(0; −0.16, 0.12) = 90.4%. This number is the probability that a random
slope from this population would take a negative value, or, in other words, the proportion of
individuals in the population who are expected to endorse positive words faster than negative
words. We illustrate this probability and its construction using the CDF in Figure 3.

However, using zero as a critical value might not be sufficiently informative, especially when
theory allows specifying a smallest effect size of interest, or what is known as a region of
practical equivalence (ROPE, Anvari & Lakens, 2021; Kruschke, 2014; Kruschke & Liddell,
2017; Lakens et al., 2018). In common applications, ROPE is used to statistically infer whether
an estimated parameter, such as the effect of valence on logRT for the average person, is
practically significant. But we can equally well use a theory-informed region of effect sizes to
describe and make inferences about the heterogeneity distribution of this effect in the popu-
lation.

Figure 4:  Construction of the point estimate of the proportion of effects in the ROPE. A.
While 𝑝𝑅𝑂𝑃𝐸  can be depicted on the probability density function (PDF), B. its construction
is easier to depict on the cumulative distribution function (CDF): 𝑝𝑅𝑂𝑃𝐸 = Φ(𝜖; 𝛽1, 𝜏1) −

Φ(−𝜖; 𝛽1, 𝜏1).
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For example, let us imagine that a theory states that valence effects in the interval [−0.1,
0.1] are practically equivalent to zero. To calculate, we can again use the normal cumulative
distribution function to calculate the proportion of individuals in the population whose va-
lence effect falls within this interval or region of practical equivalence: 𝑝𝑅𝑂𝑃𝐸 = 𝑃𝑟(−0.1 ≤
Valence effect ≤ 0.1) = Φ(0.1; 𝛽1, 𝜏1) − Φ(−0.1; 𝛽1, 𝜏1) = 29.6%. In words, 29.6% of the
population is expected to have valence effects that are practically equivalent to zero. Note
that this statement’s validity critically depends on the chosen interval’s theoretical validity.
We visualize this probability, and how it is constructed using the CDF, in Figure 4.

1.5. Ratio descriptors

Although the interval and proportion descriptors describe where the population’s slopes are
likely to fall, they do so in absolute terms such as logRT in the running example. A contrast-
ing or relative way to describe heterogeneity is to express it as a ratio of the effect’s standard
deviation to its mean. Such relative metrics are concise and can be useful especially when
the absolute units are difficult to interpret, or when comparing heterogeneity across different
populations or experimental conditions (see below). This ratio, expressed simply as the frac-
tion 𝜏1

𝛽1
 is 0.77 in the current example.

(Bolger et al., 2019, p. 609) suggest as a rule of thumb that heterogeneity can be deemed note-
worthy when the ratio of the standard deviation to the average effect is 0.25 or greater: A ratio
greater than 1/4 implies a 𝐻𝐼95 whose limits extend to effects one-half and one-and-a-half
times that of the average effect. With these data and model, the ratio 𝜏1

𝛽1
 is 0.77, suggesting

that the degree of heterogeneity in valence effects is noteworthy. While this heuristic can
sometimes be useful, we urge users to apply domain-specific knowledge when considering
critical values or thresholds whenever possible.

1.6. Missing uncertainty

The expected normal distribution of valence effects and its transformations ignore uncer-
tainty inherent in the estimated parameters. That is, we calculated 𝐻𝐼90, 𝑝−, and the other
heterogeneity measures from the point estimates 𝛽1 = −0.16 and 𝜏1 = 0.12. We did not use
any information about the precision, or uncertainty, with which these parameters were esti-
mated. We have now arrived at the crux of the current work: How should we estimate and
describe heterogeneity in psychological phenomena such that the fundamental uncertainty
in the estimated parameters is retained?

2. Incorporating inferential uncertainty to assessments of heterogeneity

Assessments of heterogeneity involve combining information about fixed and random effects;
to fully incorporate inferential uncertainty then requires accounting for their joint uncertain-
ties. Bayesian computational methods are uniquely able to address this challenge. Modern
Bayesian methods, by obtaining draws from the joint posterior distribution of all model para-
meters presumed to underlie the observed data, allow incorporating posterior uncertainty in
combinations of parameters such as the ones highlighted above (Gelman et al., 2013; Kruschke,
2014; Kruschke & Liddell, 2017; McElreath, 2020). For typical scenarios, Bayesian models are
as easy to use as their maximum likelihood counterparts (Bürkner, 2017, 2018).

The output of Bayesian computations is the multivariate posterior probability distribution
of the model’s parameters. However, closed-form solutions are not available for multivariate
posterior distributions of many important types of statistical models. Therefore, in practice
modern Bayesian methods rely on algorithms that yield many random draws from the multi-
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variate posterior distribution (Gelman et al., 2013; Ravenzwaaij et al., 2016). These draws can
then be used to calculate, summarize, and visualize any desired quantity of the multivariate
posterior such as means, variances, correlations, proportions above or below zero, and so on.
Table 3 illustrates this, showing six random draws of the posteriors of 𝛽1 and 𝜏1 (rows). We
then computed their ratio in the third column, which then represents (draws from) the ratio’s
posterior distribution and can be summarized, visualized, etc.

Table 3:  Random draws from the posterior distributions of 𝛽1, 𝜏1, and their ratio.

𝛽1 𝜏1
𝜏1
𝛽1

−0.14 0.12 −0.85

−0.18 0.13 −0.75

−0.18 0.15 −0.81

−0.17 0.10 −0.59

−0.14 0.10 −0.72

−0.17 0.15 −0.87

In practice, one obtains (for example) 4,000 samples from the posterior distribution using
Markov Chain Monte Carlo algorithms (e.g. Stan Development Team, 2023) through accessi-
ble software (e.g., Bürkner, 2017), and then summarizes them using familiar data processing
techniques (R Core Team, 2024; e.g. Wickham et al., 2023). Here, we used the R package brms
(Bürkner, 2017, 2018) to specify the model and then sample random draws from its posterior
distribution. The MCMC estimation algorithm completed in about 5 seconds on a modern
laptop. We then assessed the estimation algorithm convergence graphically and numerically,
and model adequacy using a graphical posterior predictive check (Gelman et al., 2013). (We
present these and other details in our online supplement.)

Table 4 shows summaries of Model 1’s population-level parameters’ (“fixed” parameters in the
frequentist nomenclature) posterior distributions. The second and third columns show their
means and standard deviations (which correspond to frequentist standard errors). Note that
because we used brms’s default noninformative prior distributions, the posterior summaries
are numerically very similar to the maximum likelihood estimates in Table 2.

Table 4:  Parameter estimates from Model 1 (Bayes).

Parameter Mean SD 95% CI

𝛽0 6.87 0.02 [6.82, 6.91]

𝛽1 −0.16 0.02 [−0.20, −0.12]

𝜏0 0.17 0.02 [0.14, 0.21]

𝜏1 0.12 0.02 [0.08, 0.17]

𝜌 −0.07 0.19 [−0.44, 0.31]

𝜎 0.25 0.00 [0.24, 0.26]

2.1. Heterogeneity distribution

Armed with the joint Bayesian posterior distribution of all model parameters, we can now
returned to the question of the distribution of valence effects in the population. We have 4,000

https://mvuorre.github.io/heterogeneity-uncertainty/
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draws from the posterior distribution of the heterogeneity distribution. Within each draw
from the posterior distribution, we can perform any calculation we did previously on only
the point estimate of the heterogeneity distribution.

We first recompute the expected heterogeneity distribution from Figure 1 using the posterior
mean values of 𝛽1 and 𝜏1 in Figure 5 A (thick black curve). Superimposed on that normal
density curve are heterogeneity distributions calculated from 100 random posterior draws of
𝛽1 and 𝜏1. From these curves we can see that the true distribution of valence effects might
well be less or more heterogeneous than is suggested by the expectation (point estimates).
We then perform the same exercise on the CDF as well (Figure 5 B).

Figure 5:  Uncertainty in Bayesian estimates of the heterogeneity distribution of valence ef-
fects. A. Probability density function (PDF) curves. The thick line is the same expected PDF
of valence effects from Figure 1. Thin lines show 100 PDFs calculated from random draws of
𝛽1 and 𝜏1 that collectively illustrate the uncertainty in the distribution’s location and spread.
Vertical lines on x-axis are estimated slopes for individuals in the sample (posterior means of

𝛾1). B. Cumulative distribution function (CDF) curves, annotated as in A.

Some curves in Figure 5 A are further to the left (valence effect for the average person is
more negative), and some further to the right (effect for the average person is more positive).
Moreover, some curves are flatter and wider (effect varies more around the average in the
population), and some are narrower and more peaked (effect varies less between individuals).
The distribution of these curves represents our current knowledge about the heterogeneity
distribution of valence effects in the population—given these data and this model. A sufficient
description of heterogeneity therefore must include information about uncertainty in both
the location (mean) and scale (standard deviation) parameters of the heterogeneity distrib-
ution.

Depicting the heterogeneity distribution as a probability density function (PDF) curve has its
drawbacks. First, it appears to us visually more challenging to read the degree of uncertainty
from a PDF. Second, for many applications, the y-axis is not informative: We typically do not
care that the probability density of the curve is (for example) 3.0 at some specific value of the
valence effect.

Therefore, in Figure 5 B we depict the heterogeneity distribution as cumulative distribution
function (CDF) curves based on 100 random posterior draws, together with the mean CDF in
a darker color. We believe the CDF is a useful visualization tool because the y-axis describes a
directly interpretable quantity: The proportion of the population with valence effects below
some specific value.
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2.2. Interval descriptors

Above, we described the heterogeneity interval as a range of values where a specific percent-
age of the population’s slopes are expected to fall (e.g. 𝐻𝐼90 for a 90% heterogeneity interval).
However, a single interval cannot accommodate the uncertainty with which the underlying
parameters are estimated. To carry uncertainty forward from model parameters to the 𝐻𝐼90,
we repeat the calculations from above, but instead of using only the mean’s and standard
deviation’s point estimates, we redo the calculations for each of the 4,000 randomly sampled
pairs of 𝛽1 and 𝜏1. Consequently, we get 4,000 draws from the posterior distribution of 𝐻𝐼90
(Figure 6).

Figure 6:  Uncertainty in the limits of the lower and upper limits of the heterogeneity interval
(compare to the point estimates in Figure 2 B). Thin gray lines show 100 CDFs of the hetero-
geneity distribution calculated from random draws of 𝛽1 and 𝜏1, as in Figure 5 B. Blue lines
show the calculation of the posterior distribution of 𝐻𝐼90 = Φ−1([0.05, 0.95]; 𝛽1, 𝜏1), whose
limits are also depicted as marginal histograms below the x-axis. Point estimates and intervals

represent the posterior mean and 95%CI.

Summarizing a distribution of intervals entails some challenges, however, because an inter-
val is defined by two quantities—the lower and upper bounds. The 95% most plausible lower
bounds of 𝐻𝐼90 range between [−0.46, −0.28], whereas the 95% most credible upper bounds
range between [−0.04, 0.13] (marginal histograms in Figure 6 and Figure 7 B). Thus, to ad-
equately describe an estimated heterogeneity interval, researchers must communicate two
separate uncertainty intervals: In words, we estimate that 90% of the population’s valence
effects range from −0.36 [−0.46, −0.28] to 0.04 [−0.04, 0.13].
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Figure 7:  Correlation in Bayesian estimates of the 90% heterogeneity interval of valence ef-
fects. A. Scatterplot of 4,000 posterior draws of the lower (x-axis) and upper (y-axis) limits
of 𝐻𝐼90 showing their correlation. B. Histograms of 4,000 draws of the 𝐻𝐼90 lower (left) and
upper (right) limits with their posterior means and 95% CIs as points and intervals. C. 100
random draws from the posterior distribution of 𝐻𝐼90, with the posterior mean heterogeneity

interval superimposed in a darker shade of blue.

Figure 7 further suggests that communicating the two uncertainty intervals of a heterogeneity
interval is not only cumbersome but also ignores potential correlations between the posterior
distributions of the HI endpoints (panel A). For these reasons, although the HI can be a use-
ful summary, we occasionally favor (e.g., Vuorre et al., 2024) the scalar descriptors discussed
below.

2.3. Proportion descriptors

A complementary description of heterogeneity is the proportion of the population whose ef-
fects fall above or below some critical value. For example, we can calculate proportions with
negative and positive effects by using zero as the critical value. In this example, we asked
“What proportion of individuals in the population endorse positive words faster than nega-
tive words?”
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Figure 8:  Uncertainty in the proportion of negative effects (compare to the point estimate in
Figure 3 B). Thin gray lines show 100 CDFs of the heterogeneity distribution calculated from
random draws of 𝛽1 and 𝜏1, as in Figure 5 B. Blue lines show the calculation of the posterior
distribution of 𝑝−, which is also depicted as a marginal histogram at the top left. The point

estimate and interval represents the posterior mean and 95%CI.

To answer, we calculate 𝑝− = 𝑃𝑟(Valence effect ≤ 0) = Φ(0; 𝛽1, 𝜏1) for each posterior draw
of 𝛽1 and 𝜏1. Figure 8 shows 100 posterior draws of the CDF with a vertical line superimposed
at zero. The y-axis value where the CDF crosses zero on the x-axis indicates the population
proportion of negative valence effects (𝑝−). We also show a histogram of all 4,000 posterior
draws of that proportion on the y-axis of Figure 8, with its associated 95%CI. The model
predicts the proportion of individuals in the population with negative valence effects to be
approximately 89.9% (posterior mean), but with 95% confidence this value could be as low as
79.6% or as high as 98.2%. Stated differently, the model predicts that 10.1% [1.8%, 20.4%] of
individuals in the population would show reversals of the valence effect.

Figure 9:  Uncertainty in the proportion of effects in the ROPE (compare to the point estimate
in Figure 4). A. 25 PDFs of heterogeneity distributions drawn from the joint distribution of 𝛽1
and 𝜏1. In each PDF, the area under the curve within the ROPE of [−0.1, 0.1] is highlighted
in blue. B. Line segments and points show the size of the area in the ROPE for each corre-
sponding PDF in A. Marginal histogram (bottom) shows the posterior distribution of 𝑝𝑅𝑂𝑃𝐸

calculated from all 4,000 draws from the joint distribution of 𝛽1 and 𝜏1. The point estimate
and interval represents the posterior mean and 95%CI.
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Moreover, if theory allows defining a range of parameter values that are practically equiv-
alent to zero (ROPE), we can use the posterior distribution to quantify uncertainty in the
proportion of individuals predicted to have such practically negligible effects. Dotted vertical
lines in Figure 9 A highlight the [−0.1, 0.1] interval, which serves as an example ROPE. The
area under the PDF within that interval represent the proportion of the population whose
valence effect is practically equivalent to zero (𝑝𝑅𝑂𝑃𝐸), and each line in Figure 9 B depicts
the corresponding area under the curve from Figure 9 A. To quantify uncertainty in 𝑝𝑅𝑂𝑃𝐸

we then aggregate these values to a mean and a 95%CI: 29.0% [17.4%, 40.0%] of individuals in
the population have a valence effect that is practically equivalent to zero. We note that the
ROPE of [−0.1, 0.1] here was arbitrary and picked just to illustrate the example.

So far, these examples have highlighted the importance of quantifying uncertainty in descrip-
tions of heterogeneity. Had we only focused on the point estimates (posterior means), we
might have misleadingly concluded that 𝑝− = 89.9% and 𝑝𝑅𝑂𝑃𝐸  = 29.0%. However, with 95%
confidence, these values might be as small as 79.6% and 17.4%, or as large as 98.2% and 40.0%,
respectively.

2.4. Ratio descriptors

Finally, we can assess heterogeneity in relative terms by comparing the magnitude of the het-
erogeneity in valence effects (the standard deviation 𝜏1) to the magnitude of the average effect
(the mean 𝛽1) by calculating the ratio 𝜏1

𝛽1
 (see Table 3). Figure 10 A shows 4,000 samples from

the joint posterior distribution of the mean and standard deviation, from which we calculated
4,000 samples of the posterior distribution of 𝜏1

𝛽1
 (panel B). The ratio 0.79 [0.48, 1.21] suggests

that the relative magnitude of heterogeneity is substantial, but might be as low as 0.48 or as
great as 1.21, with 95% confidence. If we used the 1/4 rule of thumb suggested in Bolger et al.
(2019), with these results we could say with confidence that heterogeneity in valence effects
is notable (the entire 95%CI exceeds 0.25).

Figure 10:  Bivariate posterior of 𝛽1, 𝜏1, and their ratio. A. 4,000 random draws from the pos-
terior distribution of the valence effect distribution’s mean (𝛽1) and standard deviation (𝜏1).
B. Histogram of 4,000 draws from the posterior distribution of the ratio of the valence distri-

bution’s scale over its location 𝜏1
𝛽1

, and its posterior mean and 95%CI.

We have seen that—with these example data and this model—our uncertainty in the estimated
heterogeneity metrics is substantial: Point estimates provide at best incomplete descriptions
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of our current state of knowledge regarding how valence effects vary between people in the
population. We will next see that incorporating uncertainty is not only useful but critical
when we turn from describing heterogeneity in one population to comparing its magnitude
across multiple populations.

3. Comparing heterogeneity between populations

We now move beyond assessing heterogeneity in one population to comparing degrees of
heterogeneity across multiple populations of two different study units: Persons and stimuli.
To illustrate, we reanalyze a dataset from Mah & Lindsay (2024) addressing differences in be-
tween-person variability (heterogeneity) in memory performance between a free recall mem-
ory task and a cued recall memory task. In Mah & Lindsay (2024)’s Experiment 3, 260 individ-
uals studied a list of twenty target words. After a short break, they then either freely recalled
as many of the target words as they could (Free recall group, N = 123) or recalled as many
target words as they could when prompted with related cue words (Cued recall group, N =
137). Thus, the Free and Cued recall tasks had different groups of participants but the same
target words. The metric of memory performance in this study was the proportion correct.
We show a sample of these data in Table 5.

With a preregistered Pitman-Morgan test, Mah & Lindsay (2024) found that participants who
completed the cued recall task were more heterogeneous in their memory performance—
the proportion of target words correctly recalled—than those in the free recall group: The
Cued:Free recall between-person memory performance variance ratio was 1.33 (with a [1.14,
1.54] 95% bootstrap interval). Mah & Lindsay (2024), across three experiments, confirmed this
result by comparing models that did and did not allow for distinct between-person variabili-
ties in each group.

Table 5:  Six rows of example dataset 2 (Mah & Lindsay, 2023; Exp 3).

Per-
son

Task Target Accuracy

9 Free bread 0

9 Free chair 1

9 Free fruit 0

1 Cued bread 1

1 Cued chair 1

1 Cued fruit 1

Let us now see how our earlier descriptions of heterogeneity can be usefully extended to
potential differences between populations. In addition, we extend the inquiry to incorporate
heterogeneity across another source of variance: The target words used in the study (Judd et
al., 2012, 2017). We ask three questions about differences in heterogeneity: (1) To what extent
is memory performance more variable between people in the cued recall task compared to
the free recall task? (2) To what extent is memory performance more variable between target
words in cued-versus-free recall tasks? And (3) How consistent is target word heterogeneity
across the two tasks: Are target words associated with good memory performance in cued
recall experiments the same words that are associated with good memory performance in
free recall experiments?
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To answer these questions, we model the 𝑖th total recall accuracy in 1 to 5200, of person 𝑗
in 1 to 260, word 𝑘 in 1 to 20, and task 𝑚 in {F (free recall), C (cued recall)} as Bernoulli dis-
tributed, where the probability of an accurate answer is determined by the rate parameter 𝜋.
As is common with generalized linear models, we model 𝜋 using a nonlinear link function.
In this example, we use the cumulative normal distribution function (Φ, or probit link), but
other link functions could also have been used, such as the logit. We then specify the “linear
predictor” 𝜂 of this function as a linear combination of the fixed and random effects. We write
this model as

Accuracy𝑖𝑗𝑘𝑚 ∼ Bernoulli (𝜋𝑗𝑘𝑚)

𝜋𝑗𝑘𝑚 = Φ(𝜂𝑗𝑘𝑚)
𝜂𝑗𝑘𝑚 = 𝛽𝑚 + 𝛾𝑗𝑚 + 𝛿𝑘𝑚

𝛾[𝑚:𝐹] ∼ Normal (0, 𝜏𝛾[𝑚:𝐹]
)

𝛾[𝑚:𝐶] ∼ Normal (0, 𝜏𝛾[𝑚:𝐶]
)

[
𝛿[𝑚:𝐹]

𝛿[𝑚:𝐶]
] ∼ MVN ([0

0], (
𝜏𝛿[𝑚:𝐹]

𝜌𝛿 𝜏𝛿[𝑚:𝐶]

)).

(4)

This Model 2 (Equation 4) of memory performance is similar to our Model 1 of valence effects
above but contains two sources of heterogeneity: persons, whose parameters we represent
with 𝛾, and target words, whose parameters we represent with 𝛿. In addition, instead of cod-
ing the task type (free recall vs. cued recall) using predictor coding schemes such as contrast
or dummy coding, we have index-coded task using subscripts 𝑚:𝐹  for Free recall parameters
and 𝑚:𝐶  for Cued recall parameters. This parameterization allows us to quantify heterogene-
ity in memory performance separately for the two tasks.

Note also that while we model 𝛾 using independent normal distributions for each task, we
model 𝛿 with correlated normal distributions. Because different persons participated in the
two tasks, we cannot assess whether participant-specific abilities are correlated across the
tasks. But we can assess this for target items, which were common across the tasks.

We estimated Model 2 exactly as Model 1, by taking 4,000 random draws from its posterior
distribution (Bürkner, 2017). We then confirmed graphically and numerically that the estima-
tion algorithm had converged, and that the model performed adequately using a graphical
posterior predictive check (Gelman et al., 2013). We summarise the model’s posterior distrib-
ution in Table 6.
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Table 6:  Parameter estimates from Model 2.

Parameter Mean SD 95% CI

𝛽𝑚:𝐹 −0.15 0.075 [−0.29, 0.00]

𝛽𝑚:𝐶 0.27 0.117 [0.04, 0.50]

𝜏𝛾𝑚:𝐹
0.37 0.041 [0.29, 0.46]

𝜏𝛾𝑚:𝐶
0.67 0.055 [0.57, 0.79]

𝜏𝛿𝑚:𝐹
0.29 0.058 [0.19, 0.42]

𝜏𝛿𝑚:𝐶
0.43 0.083 [0.30, 0.62]

𝜌𝛿 0.57 0.188 [0.12, 0.86]

3.1. Comparing between-person heterogeneity across tasks

Descriptively, we reproduced Mah & Lindsay (2024)’s finding that participants’ memory per-
formance was more heterogeneous in the cued recall task than in the free recall task (rows 3
and 4 in Table 6). We show the relevant estimated quantities and the implied heterogeneity
distributions in Figure 11.

The top panel of Figure 11 A illustrates the posterior distributions of memory performance
for the average person in the free and cued recall tasks, and their difference (cued - free recall):
While recall performance was −0.15 [−0.29, 0.00] and 0.27 [0.04, 0.50] probits in the free and
cued recall conditions, respectively, the corresponding probabilities were 0.44 [0.39, 0.50] and
0.61 [0.52, 0.69]. Notice that the model’s parameters refer to probits (standard normal deviates,
or “z-scores”) because of the link function we used. Therefore, for example zero translates to
50% accuracy.

More importantly, the second row in Figure 11 A describes the posterior distributions of the
between-person standard deviations in memory ability in the free and cued recall tasks, and
their difference (cued - free recall). The standard deviation was 0.30 [0.16, 0.43] probits greater
in the cued recall task (ratio: 1.82 [1.38, 2.37]). Note that our estimate of the heterogeneity dif-
ference is greater, and associated with greater uncertainty, than what was originally reported
by Mah & Lindsay (2024), potentially because our model also includes heterogeneity across
target words.

The third row of Figure 11 A shows the estimated proportions of individuals whose memory
performance exceeded 50% (𝑝+), and their difference between tasks. The model estimates the
proportion of individuals who recall over 50% of items to be 0.31 [0.15, 0.46] greater in the
cued than in the free recall task. Note that this quantity refers to population proportions and
is not a z-score.
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Figure 11:  Estimated between-person heterogeneity in memory performance in Free recall
and Cued recall tasks from Model 2. A. Histograms of 4,000 posterior draws from the model
parameters and their transformations, with points and intervals showing posterior means and
95%CIs. Differences are calculated as Cued - Free recall. 𝑝+ indicates the proportion of the
population whose proportion correct is predicted to be above 50%. Heterogeneity ratio indi-
cates standard deviations divided with their respective means (we truncated this axis at [−5,
5] for clarity). B. Probability density (top) and cumulative distribution functions (bottom) of
the two groups’ heterogeneity distributions (green: free recall, red: cued recall). The densities,
points, and intervals on the left y-axis of the bottom panel indicate approximate posterior
densities, with means and 95%CIs, of the proportions of the populations with memory per-
formance above 0.5. Densities, points, and intervals on the x-axis of the bottom panel indicate
approximate posterior densities, with means and 95%CIs, of the 90% heterogeneity interval’s

lower (left) and upper (right) bounds.

Perhaps surprisingly, even though the absolute measures of heterogeneity differed greatly
between the two recall tasks, the bottom row of Figure 11 A shows that the degree of rela-
tive heterogeneity is virtually identical across the two tasks. This heterogeneity ratio’s math-
ematical equivalent is commonly known as the coefficient of variation (CV), which is used
frequently in many areas of psychological research, such as psychophysics. In those areas,
a common finding is that while there might be experimental effects on an individual’s re-
sponse distribution’s mean or dispersion, the CV frequently remains stable across conditions
(dispersion tends to grow larger with increased stimulus strength, for example). Our results
show that this coefficient of variation in individual’s memory abilities remains stable across
conditions that lead to different average memory performances.

We truncated the Heterogeneity ratio panel’s x-axis at [−5, 5] because ratios of two normal
distributions with zero means are Cauchy distributed. Sampling from a Cauchy distribution
frequently returns extreme draws because of the distribution’s thick tails. Consequently, pos-
terior draws of 𝜏

𝛽  can approximate a Cauchy-distribution and therefore exhibit frequent ex-
treme values. These extreme values would obscure the bulk of the distribution if the axis was
not truncated. More colloquially, near-zero means will necessarily lead to infinite ratios, and
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consequently this coefficient can be very sensitive to small changes in the mean value. The
difference in ratios is very uncertain for the same reason.

We also depict the heterogeneity distribution’s posterior distribution as a PDF and a CDF in
Figure 11 B. Unlike in Figure 5 where we represented random draws of the functions’ poste-
riors as thin lines, Figure 11 instead aggregates the posteriors to means (dark line) and 95%
credibility ribbons (light areas) to reduce overplotting. These figures allow for concise and
complementary descriptions of (differences in) heterogeneity in the two tasks. In other words,
they allow visually comparing the population distributions of memory performance across
the cued and free-recall tasks.

First, we see that the majority of the free recall group’s CDF (green) is to the left of zero (50%
recall), indicating that the majority of this population is predicted to recall less than half of
items. This information is described in more detail in the small posterior densities and point-
intervals on the left y-axis: The model predicts above-50% performance only for a proportion
of 0.35 [0.21, 0.50] of the population. Second, we see that the slope of the cued recall CDF (red)
is less steep and to the right to that of the free recall CDF: The between-person distribution
of memory abilities is more dispersed in the cued than in the free recall task. The proportion
of individuals in the cued recall task who are predicted to perform above 50% was 0.65 [0.52,
0.78].

Finally, we turn to the heterogeneity interval (HI). The 𝐻𝐼90’s lower bound in the free recall
task is −0.76 [−0.96, −0.57], and −0.83 [−1.13, −0.55] in the cued recall task (leftmost green
and red densities on bottom x-axis of Figure 11, respectively). While this 5th percentile of
the heterogeneity distribution was not credibly different across the two tasks (Cued - Free
recall; −0.07 [−0.39, 0.24]), the 95th percentiles (rightmost green and red densities on bottom
x-axis of Figure 11, respectively) differed at the 95% credibility level (the Cued recall upper
𝐻𝐼90 limit was 0.91 [0.60, 1.23] probits greater). Studying Figure 11 B closely makes another
implication of the different standard deviations clear: While the average person likely has
greater memory performance in the cued recall task, the model predicts that there are also
more individuals with very poor performance in the cued recall condition (although this dif-
ference was not credibly different from zero).

3.2. Comparing target word heterogeneity across tasks

Between-person heterogeneity is typically the more theoretically important phenomenon for
psychologists than differences in model parameters between other randomly sampled study
units, such as stimuli. However, examining heterogeneity in other sampled units can be both
theoretically and methodologically important (Judd et al., 2012, 2017). We next turn to our
second and third questions regarding potential differences and consistencies in between-tar-
get word heterogeneity.
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Figure 12:  Heterogeneity between target words in memory performance in Free recall and
Cued recall tasks from Model 2. A. Histograms of 4,000 posterior draws from the model pa-
rameters and their transformations, with points and intervals showing posterior means and
95%CIs. Differences calculated as Cued - Free recall. B. Probability density (top) and cumula-
tive distribution functions (bottom) of the two tasks’ heterogeneity distributions (green: free
recall, red: cued recall). The densities, points, and intervals on the left y-axis of the bottom
panel indicate approximate posterior densities, with means and 95%CIs, of the proportions
of the populations with memory performance above chance. Densities, points, and intervals
on the x-axis of the bottom panel indicate approximate posterior densities, with means and
95%CIs, of the 90% heterogeneity interval’s lower (left) and upper (right) bounds. C. Poste-
rior mean (dark), and 100 posterior draws (light) of the correlation between target words’
proportions correct in the free (x-axis) and cued recall (y-axis) tasks. Ellipses indicate the 90th
percentile of the bivariate normal distribution. Small black circles are estimated parameters

for target words in the sample (posterior means of 𝛾).

Differences in between target-word heterogeneity were similar to those observed for be-
tween-person heterogeneity. Figure 12 A shows that heterogeneity in memory performance
was greater when words appeared in the cued recall task (the standard deviation was 0.14
[−0.01, 0.34] probits greater in the cued recall task [ratio: 1.55 [0.97, 2.44]]). Thus, both people
and target words exhibit greater memory performance variability in the cued recall than in
the free recall task. Moreover, this difference holds even when the exact same units—target
words, in this example—are used in the two different tasks.

As was the case for between-person heterogeneity, the model predicts the proportion of words
that elicit greater than 50% accurate recall to be greater in the cued recall (0.73 [0.53, 0.90])
than in the free recall task (0.30 [0.14, 0.50]; difference: 0.43 [0.20, 0.65]). The ratio of the het-
erogeneity distribution’s standard deviation to its mean was again very similar across the two
tasks (-2.46 [−15.31, 8.82]).

The design of Mah & Lindsay (2024)’s study and our analysis of the dataset afforded an addi-
tional piece of information: Because the same target words were used across the two tasks, we
could examine the consistency of target words’ heterogeneity across the two tasks (question
(3)). There was a clear positive correlation between target words’ rates of correct responses
across the free and cued recall tasks (bottom panel of Figure 12 A and C). The posterior mean
and 95%CI of this correlation was 0.57 [0.12, 0.86].
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This correlation’s substantive interpretation is that words that are likely better recalled in
the free recall task are also likely to be those that are better recalled in the cued recall task.
(Bolger et al. (2019) found a conceptually similar result regarding valence effects’ stability
across time but within individuals: Individuals whose valence effect was stronger at Time 1
were also those whose valence effect was likely to be stronger at Time 2, one week later.)
For example, the tools presented here would facilitate seeking for theoretically interesting
conditions where this consistency is violated.

Our study of Model 2’s results might indicate exciting new avenues for this line of inquiry. One
explanation for the between-task difference in between-person heterogeneity is that partici-
pants might adopt different recall strategies in the two tasks (Mah & Lindsay, 2024). Because
we find target words, too, to be more heterogeneous in the Cued task (Figure 12 A), recall
strategies and differences therein might further depend on target words. We also observed
across both people and target words that the ratio of the between-unit standard deviation to
the average effect was nearly identical across the free and cued recall tasks. Finally, given
that we operationalized the stability of item difficulties as a correlation across tasks, it might
be theoretically important to look for sets of stimuli where this positive correlation did not
occur.

4. Discussion

In the current work, we illustrated the use of practical descriptors of heterogeneity with ex-
amples drawn from social and cognitive psychology. Our aim was to incrementally build on
the work of Bolger et al. (2019) and others—who have described the importance and available
methods for examining heterogeneity in causal effects—by describing how it is both critically
important and practically feasible to incorporate uncertainty in analyses and descriptions of
heterogeneity. Our currently proposed methods incorporate uncertainty into both modelling
of and inferences about heterogeneity.

Although prior work on developing metrics of heterogeneity, and placing experimental ef-
fect sizes in context of person-specific effects exists, it has largely ignored estimation un-
certainty and thus remained purely descriptive. For example, Grice et al. (2020) describe a
method whereby analysts count the number of individuals whose point estimate of an effect
is concordant with a hypothesis. But such counting ignores estimation uncertainty in both
the person-specific effects and variability among them. By accounting for these uncertainties,
the methods described here go beyond description and allow inference to be drawn regard-
ing populations and individuals with confidence. Moreover, counting individuals’ parameters
provides a description of individuals in the sample, rather than of the population, which was
our focus.

Second (Schuetze & Hippel, 2024, p. 3) suggest that “past efforts to identify heterogeneous
effects have yielded a disproportionate number of disappointing, uninterpretable, and non-
replicable findings”, and suggest low power as one potential antecedent. While perhaps an
overstatement, one reason for why previous investigations of heterogeneity may have been
suboptimal indeed relates to statistical power: By not duly incorporating and reporting on
the uncertainty with which heterogeneity is estimated, investigations are more suspect for
reporting substantial heterogeneity where it may not truly exist.

Finally, Bolger et al. (2019) provided an extensive discussion of how heterogeneity can be
estimated for causal effects in psychology. We directly built on that work to illustrate the
benefits and how such descriptions can and should include representations of uncertainty.
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We emphasized throughout that the Bayesian approach is well-positioned to answer the needs
of researchers interested in heterogeneity. Bayesian methods allow carrying uncertainty for-
ward from model parameters to descriptors of heterogeneity and beyond. The resulting met-
rics are useful because they not only convey analysts’ expectations regarding heterogeneity,
but more fully convey their states of knowledge regarding heterogeneity, including degrees
of certainty. In addition, Bayesian modelling, by returning a matrix of samples from the pos-
terior distribution, enables practically straightforward solutions whereby analysts can use fa-
miliar data wrangling techniques to easily compare various heterogeneity descriptors across
groups. Our online supplement illustrates these techniques in detail. However, some methods
described here could be implemented with e.g. joint bootstrap methods, but in our view those
require additional practical steps—bootstrapping, for one—and might therefore be less prac-
tical.

We believe that psychology, broadly speaking, is methodologically and theoretically ripe for
incorporating effect heterogeneity into substantive theories (Bolger et al., 2019). To do so,
descriptions of heterogeneity must include measures of uncertainty, and we hope the tech-
niques illustrated here help researchers do so.

4.1. Limitations

In our example analyses, we have brushed many important modelling decisions under the rug
in order to focus on the main topic of heterogeneity. First, in the first example, we analyzed
reaction times by simply log-transforming reaction times. More informative analyses of RTs
would make use of models that make more realistic assumptions about the data generating
process underlying reaction time responses, but here we necessarily excluded this complica-
tion for reasons of brevity.

Our exposition and interpretation of heterogeneity relies on a critical assumption in line with
standard practices in multilevel and generalized linear mixed modelling; that of (multivari-
ate) normality of the unit-level (person, item, etc) parameters. Assuming that random effects
are normally distributed is a computationally and conceptually useful fiction, and we recog-
nize that it is unlikely to hold exactly in real psychological phenomena. Haaf, Rouder, and
colleagues have explored alternatives to continuous normal distributions of random effects
(e.g., Haaf & Rouder, 2017, 2019).

4.2. Conclusion

We hope that the conceptual, computational, and graphical tools that we have discussed here
prove useful to researchers interested in better understanding heterogeneity in psychological
phenomena.
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and Mah & Lindsay (2024).
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