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ABSTRACT
Introduction: Evaluating effects of behavior change interventions is
a central interest in health psychology and behavioral medicine.
Researchers in these fields routinely use frequentist statistical
methods to evaluate the extent to which these interventions
impact behavior and the hypothesized mediating processes in the
population. However, calls to move beyond the exclusive use of
frequentist reasoning are now widespread in psychology and
allied fields. We suggest adding Bayesian statistical methods to
the researcher’s toolbox of statistical methods.
Objectives: We first present the basic principles of the Bayesian
approach to statistics and why they are useful for researchers in
health psychology. We then provide a practical example on how
to evaluate intervention effects using Bayesian methods, with a
focus on Bayesian hierarchical modeling. We provide the
necessary materials for introductory-level readers to follow the
tutorial.
Conclusion:: Bayesian analytical methods are now available to
researchers through easy-to-use software packages, and we
recommend using them to evaluate the effectiveness of
interventions for their conceptual and practical benefits.
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Introduction

Bayesian inference, after being conceived by the clergyman Thomas Bayes and astron-
omer-mathematician Pierre-Simon Laplace in the 1700s, spent two centuries in rela-
tive obscurity before surfacing again in the mid-1900s, with the rise of modern
computing (McGrayne, 2011). Since then, much ink has been spilled over discussions
about the validity and relative benefits of different statistical approaches (Efron, 2013).
It may then come as a surprise that many statisticians now consider these debates out-
dated: ‘We have all, or nearly all, moved past these old debates, yet our textbook
explanations have not caught up with the eclecticism of statistical practice’ (Kass,
2011). Further, there has long been a broad agreement that consumers of applied stat-
istics need to move beyond null hypothesis significance testing as it is traditionally
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conducted (Benjamin et al., 2017; Cumming, 2014; Gigerenzer, Krauss, & Vitouch,
2004; Kruschke, 2010; Lakens et al., 2017; McShane, Gal, Gelman, Robert, &
Tackett, 2017; Nickerson, 2000).

Accordingly, Bayesian statistical methods have recently experienced a surge in popular-
ity in psychology and other disciplines (Andrews & Baguley, 2013; van de Schoot, Winter,
Ryan, Zondervan-Zwijnenburg, & Depaoli, 2017), reaching mainstream health psychology
recently (Beard & West, 2017; Depaoli, Rus, & Clifton, 2017). The Bayesian approach to
inference is especially attractive in the context of health psychology for several reasons. For
example, Bayesian methods perform well with small sample sizes (van de Schoot, Broere,
Perryck, Zondervan-Zwijnenburg, & Van Loey, 2015), which is of importance to health
psychologists in many areas. In addition, Bayesian methods perform well with complex
statistical models such as multilevel structural equation modeling (Depaoli & Clifton,
2015; Vuorre & Bolger, 2017) and growth mixture modeling (Depaoli, 2013) – but also
simpler ones examining differences between two groups (Kruschke, 2013). Powerful
robust methods are now emerging for analyzing heterogeneous data (Williams &
Martin, 2017). Also, Bayesian methods allow for the researcher to incorporate prior infor-
mation regarding the research topic in evaluating the data, which allows for improvements
in out-of-sample prediction.

In this tutorial, we present an introductory-level overview on the Bayesian approach to
statistical inference and a practical tutorial on applying Bayesian methods to analyzing
effects of behavior change interventions that use an experimental design. Because our
aim is to present a hands-on introductory tutorial for beginners, wherever applicable
we refer the reader to further resources for a more in-depth understanding. In addition
to the conceptual part, researchers who mainly act as reviewers and might not need to
conduct Bayesian analyses themselves may find the annotated reading list by Etz,
Gronau, Dablander, Edelsbrunner, and Baribault (2017) useful.

Evaluating interventions as a key research interest

Evaluating effects and processes of health behavior change interventions is an increasingly
studied topic in the field of health psychology and behavioral medicine. Intervention
studies can help identify the most effective solutions to promote health and prevent
disease in specific populations and target behaviors and provide a useful platform to
test and refine theories of health behavior change (Rothman, 2004). Indeed, the U.K.
Medical Research Council guidance on a process evaluation of complex interventions
(Moore et al., 2015), as well as the WIDER consensus statement (Abraham, Johnson, de
Bruin, & Luszczynska, 2014), call for increased attention to the postulated processes
underpinning behavior change. To draw reliable and appropriate conclusions (for both
practice and theory), we need not only a good theory, a rigorous study design and
high-quality data collection procedures, but also a sound analytical approach to under-
stand the data.

Complex health behavior intervention studies are often designed to a specific popu-
lation, usually require a long time to plan carefully, and are arguably even less often
directly replicated than is the case in psychology in general (Makel, Plucker, & Hegarty,
2012). Due to a large amount of resources needed for data collection in the field rather
than in the laboratory setting, it is often not possible to gather additional participants
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when attrition reaches surprisingly high levels, or when the recruitment plan turns out
overly optimistic. On the other hand, recruitment may be a success, but for the quantitat-
ive process evaluation, the complexity of the intervention requires a more complex stat-
istical model for assessing its mechanisms, than what the trial was powered for. These
are just some examples of situations where Bayes can help.

Hence, an intervention researcher may use the Bayesian methods in various phases of
an intervention study: In the definitive randomized controlled trial (RCT), a key interest
lies in the evaluation of the effectiveness of the intervention in changing the primary
outcome(s). Additionally, a Bayesian approach could be taken to evaluate the psychosocial
or other processes explaining the causal mechanism behind the intervention effect on the
outcome (or a lack thereof).

Furthermore, Bayesian evaluation could also be used in the earlier phase of feasibility
testing and piloting, and optimization of the intervention prior to full trial: To make sure
that work is not thrown to waste because of unwarranted assumptions, many guidelines
recommend that measures and delivery of an intervention be tested in small scale
before embarking in a definitive RCT to evaluate its effectiveness (e.g. Craig et al.,
2008). In such studies, one possible use of Bayesian inference could be a preliminary inves-
tigation of intervention effects on its hypothesized impact mechanisms via determinants
(e.g. attitudes, motivation) or even outcomes.

Example dataset: intervening on physical activity motivation

This tutorial uses a dataset from a recent study examining the feasibility and acceptability
of the ‘Let’s Move It’ intervention and planned trial procedures (Hankonen et al., 2017),
prior to a definitive effectiveness trial. The aim of this multilevel, school-based interven-
tion was to increase physical activity (PA) and decrease sedentary behavior among older
adolescents (Hankonen et al., 2016). The intervention included several components, e.g.
six weekly group sessions, delivered in the context of a health education course, to increase
motivation and self-regulation skills to promote leisure-time PA, poster campaign, teacher
training for reducing excessive sitting in classrooms, etc. The focus of this tutorial is on the
PA change and the student dataset (n = 43). Four student groups, randomized into control
and intervention arms, were measured at baseline (T1) and after the intensive intervention
at approximately six weeks (T2).

The program theory of this complex intervention hypothesized several mechanisms of
action. One of the key hypothesized mechanisms leading to increased PA, based on the
self-determination theory (Ryan & Deci, 2000), are the positive changes in the quality
of motivation, i.e. internalization of motivational regulation. The intervention attempts
to deliver autonomy supportive and motivational interaction, prompting participants to
find personally meaningful and intrinsically motivated reasons to engage in PA, as
opposed to controlled motivation, e.g. engaging in PA for extrinsic reasons such as avoid-
ing external punishment or feelings of guilt or shame.

As is often the case in such feasibility studies, this sample size is relatively small, as their
primary objectives include investigations of acceptability to participants and/or providers,
and feasibility of the study design and intervention. (‘A feasibility study asks whether
something can be done, should we proceed with it, and if so, how’; Eldridge et al.,
2016). Hence, the study did not aim to reliably detect hypothesized changes in
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outcomes. But does this mean that the collected data are uninformative regarding those
changes? Traditional null hypothesis significance testing suggests not much has been
learned, but a Bayesian estimation perspective can provide a richer perspective to the
investigation.

In our case, it was assumed that a change in the determinant should be (possibly much)
higher than the expected subsequent change in the outcome; hence, it might be possible to
extract useful information from the study even with the small sample available. But we do
not know this before we examine the data. Such information in similar pilot studies could
then be used to inform and/or modify a definitive RCT that is set to follow.

For our demonstration purposes, the case at hand is now used to investigate the inter-
vention’s effects on determinants of PA change, or on the other hand, the plausibility of
the intervention causing counterproductive effects. Specifically, the research question is:
‘To what extent does the intervention affect autonomous motivation?’. We now turn to
introducing the foundations of Bayesian inference, and then show how to use them to
answer this research question.

We will keep the discussion about the intricacies of Bayes on a general level and focus
on practicalities in this tutorial. We encourage the reader to look into ongoing discussions
about the differences between objective, subjective and falsificationist Bayes, and how the
standard model of Bayesian inference as subjective and inductive is very much debatable
(Gelman, 2011; Gelman & Hennig, 2017; Gelman & Shalizi, 2013).

Bayesian inference

In the example case, we are interested in modeling the change of autonomous motivation
over time, and how that change differs between the intervention and control groups. Con-
ventionally, one would estimate the effect and calculate the p-value1: How probable would
this – or more extreme – data be in the long run, if the effect was zero (i.e. null hypothesis
was true).

Instead of considering the long-term implications of the observed or more extreme data
given the null hypothesis, Bayesians consider the data fixed, and inspect processes that
could describe such data. These processes are represented as assumed models, which
have certain settings, or parameters2. Parameter values are then evaluated based on
their capacity to generate data that matches the observed data.

This brings us to a major difference between the Bayesian and frequentist approaches:
the meaning of probability. Frequentists consider probability as long-run frequency from a
very long (or infinite) sequence of repetitions. For Bayesians, the probability is a measure
of uncertainty associated with unknown quantities, such as the parameters in a model.

What a Bayesian seeks is the probability of a parameter, given the data – written as
p(parameter | data). This value is found by taking advantage of a certain property of con-
ditional probability:

p(B | A)× p(A) = p(A | B)× p(B).

We can substitute A and B with parameter and data;

p(parameter | data)× p(data) = p(data | parameter)× p(parameter).
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Dividing both sides by the probability of data, we get:

p(parameter | data) = p(data | parameter)× p(parameter)
p(data)

.

The expression is essentially what is known as the Bayes’ theorem, which is often recog-
nized as:

posterior = likelihood× prior
average likelihood

.

We can also think of the posterior being the likelihood multiplied by the prior and a
normalizing constant. So, one way to put the above is to say that ‘the posterior is pro-
portional to the likelihood multiplied by the prior’. These terms will be presented next.

The three components of Bayes

Bayesian inference deals with information in terms of probability distributions. Uncer-
tainty in e.g. parameters and hypotheses is expressed in the terms of these distributions.
The inferential process works by weighing one distribution (the ‘prior’) with another
(the ‘likelihood’) and ending up with a third (the ‘posterior’). In the following presen-
tation, we avoid the mathematics of how this process works, and instead focus on building
a visual intuition3 of it; Etz and Vandekerckhove (2017) provide an accessible introduction
to the computations for the interested.

The prior
The first component, the prior distribution, should incorporate all previous information –
before seeing the data – about where the parameters might lie. Priors nudge the inference
toward values that are credible. If this seems like an odd thing to do, bear in mind how
we intuitively weigh evidence based on how extraordinary a claim it is supposed to corrobo-
rate. For example, we are much more prone to believe that smokers have a higher incidence
of lung cancer than non-smokers, compared with smokers having better extrasensory per-
ception abilities than non-smokers. This information would be included in the prior, so
that our analysis would need less evidence to support the former than the latter.

Besides being required to obtain the posterior distribution, priors give researchers
several advantages. The first of these is actually being forced to consider what is already
known and expected of the phenomenon under study. Another prominent benefit is redu-
cing overfitting; learning too much from the idiosyncratic properties of the data. When this
happens, one is fooled into thinking that the model describes the regular, recurrent fea-
tures of the phenomenon, when in fact it only describes the sample at hand (McElreath,
2017; Yarkoni & Westfall, 2016). Priors can thus ‘regularise’ our inferences: When we
observe overly optimistic or pessimistic estimates (e.g. problematic measurements), they
are weighted by the prior, hence distorting the analysis less and improving out-of-
sample prediction. Other benefits of including prior information include helping circum-
vent the problem of non-identification in complex models (e.g. McElreath, 2016, p. 150).

It may seem like a daunting task to quantitatively describe prior information, and
sometimes it truly is. In the end, the investigator must be equipped to defend the prior
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to a sceptical audience, who may have very different views of what can be considered
reasonable (although one should aim to appease them with appropriate sensitivity ana-
lyses; Depaoli & van de Schoot, 2017). Still, when researchers interpret traditional analyses
as posterior probabilities, it is often left implicit that they are assuming absolutely nothing
of the phenomenon under investigation is known in advance. This is of course practically
always false, and when little is known, one could carefully choose a prior which reflects
that (see discussion on informativeness below).

Setting the prior can start from a very simple task, agreeing that impossible values are
impossible: Our questionnaire had a scale of 1–5, so values of change larger than four and
smaller than minus four are not possible. Further, we usually know how our measures
behave in similar situations. It is easy to conjecture that small changes are more probable
than very large ones in most if not all intervention contexts, and good reasons exist to
assume the change scores approximate a normal distribution (for a maximum entropy jus-
tification, see McElreath, 2016, pp. 272–275). For simplicity, let us presume that the stan-
dard deviation will be one, making the measure coincide with Cohen’s d4. We could say
that most changes are between +1 (recall from earlier that the maximum change is four)
and that few are more extreme than+3. This information can be represented by a normal
distribution with mean zero, and a standard deviation of 1, which is denoted N(0, 1). Thus,
by the ‘empirical rule’ of normal distributions, 68% of effects would range between +1,
95% between +2 and 99.7% between +3. We can use this distribution, visualized with
a dotted line in Figure 1 as our prior.

Note that priors can vary as to their informativeness, and if they assert more specific
effects, they affect the results more. The above is an example of an informative prior,
albeit a quite weakly informative one. If we wanted a less informative prior, we could
increase the standard deviation of the normal, or replace it with a Cauchy5 distribution,
making the distribution flatter and thus more permissive of extreme events. Researchers
should use existing evidence of similar interventions in similar populations to form infor-
mative priors, if they choose to use informative rather than non-informative ones. Alter-
natively, if we did not want to use prior information, we could set a non-informative prior,
which states that all changes are as plausible a priori (represented by the horizontal line in
Figure 1). This often results in the same numerical value as in frequentist estimation, but
with a very different interpretation.
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Figure 1. Three alternative priors, with varying informativeness. Dotted line depicts N(0, 1), solid N(0,
2.5), and dashed a uniform distribution.
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The likelihood
Next, in the data analysis phase, we multiply our chosen distribution with the likelihood.
The likelihood represents the observed evidence itself; what the data tells us. It is the prob-
ability of data conditioned on different parameter values, multiplied by a constant.6

Suppose we observed an increase of autonomous motivation score by a whopping 2.1
on average in a group of 100 people. The likelihood of this data, as a result of our chosen
likelihood model, is represented by a normal distribution with a mean of 2.1 and a stan-

dard deviation of
SD!!
n

√ (see Dienes (2008), p. 93). Figure 2 presents the prior we defined

earlier, N(0, 1), with the likelihood.

The posterior
When the likelihood is multiplied with the prior, we end up with an updated view of the
world, known as the posterior distribution. Think, for a moment, about the resulting
values: multiplying something by zero gives zero, so the prior-times-likelihood combi-
nation is zero for all values except for the area from about 1.9 to about 2.4. The resulting
posterior distribution is presented as the solid line in Figure 3.

As we can see, the prior nudged the posterior slightly to the left of the likelihood. Had
the prior been flat, the posterior would have looked identical to the likelihood. Also, the
more observations we have, the more prominent the likelihood is, and the less the prior
matters. The posterior distribution as a whole is our estimate, but we could compress
this information and report just the value with highest probability density like is often
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Figure 2. Prior (dotted) and likelihood (dashed) distributions.
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Figure 3. Prior (dotted), likelihood (dashed) and posterior (solid).
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done with frequentist point estimates. On the other hand, the uncertainty around the esti-
mate is usually crucial; we could present this by reporting the ‘credible interval’. A
common choice for the credible interval is the central X% of the posterior distribution.
For example, for the 95% credible interval, one could take the range between the 2.5
and 97.5 percentiles.

Note how frequentist confidence intervals often get intuitively confused with credible
intervals. A 95% confidence interval for a mean tells you that 95% of intervals obtained
from the sampling process would contain the population mean. However, any particular
observed confidence interval either does or does not include the population mean; i.e. the
probability of a given confidence interval containing the mean is either 1 or 0, not 95%
(Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2015).

To obtain the posterior distribution, Bayesians usually use a method known as Markov
Chain Monte Carlo (MCMC) (Ravenzwaaij, Cassey, & Brown, 2016). They do this because
mathematically exact solutions are difficult or impossible to find in many applied cases.
The MCMC method simulates the posterior by drawing random samples from the distri-
bution. We will not go into details here, but suffice it to say that the more samples are
drawn, the more accurate the result.

Bayes factors

A Bayes factor BF10 is the weighted ratio of two likelihoods. For simple point hypotheses, it
is the likelihood of data given H1 divided by the likelihood of data given H0, commonly
used in Bayesian hypothesis testing. It answers questions such as ‘Given the data, how
many times more likely is a change of 0.5 compared to a change of zero’.

For simple models with so-called conjugate priors, which we will not delve into here,
BFs can be very useful, but many applications have technical aspects which raise concerns.
Some of these relate to using default priors, others to placing all prior mass to a single
point; see e.g. Gelman and Rubin (1995), Robert (2016), and pages 182 and 193 in
Gelman et al. (2013). We will not focus on BFs in this tutorial. For an accessible introduc-
tion to Bayes factors in health psychology context, we would like to direct the reader to
Beard, Dienes, Muirhead, and West (2016). Dienes (2008) is a compact general introduc-
tion to the topic. In addition, Rouder, Morey, Verhagen, Province, and Wagenmakers
(2016) shows some motivating examples behind the reasoning, Schönbrodt and Wagen-
makers (2017) presents a design analysis perspective using BFs, and Etz (2015) is a prac-
tical guide to BFs in linear regression using R. Recently, the R package Bridge
sampling (Gronau & Singmann, 2017) has been developed to deal with technical chal-
lenges in calculating BFs.

The R environment for statistical computing

This tutorial will introduce Bayesian data analysis using the R environment for statistical
computing (R Core Team, 2017). We focus on the R language for several reasons. First,
with increasing demands for transparency and reproducibility in science, it is becoming
increasingly important to plan work so that other researchers (and the future you)
can understand what precisely was done to obtain the results (Munafò et al., 2017;
Vuorre & Curley, 2017). Such reproducibility and transparency of communication is
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best achieved by doing statistical analyses using a programming language, instead of a
point-and-click interface because by necessity each step in the former option is saved
into the programming script that runs the analyses. This is reminiscent of the common
practice of saving SPSS syntax for analysis, which however often omits e.g. changes in
variable types in the graphical interface. Second, Bayesian data analysis is an extremely
flexible tool, and for this reason has not yet been implemented to a satisfactory degree
in point-and-click software (but see the JASP and jamovi programs: JASP Team (2017)
and jamovi project (2017)). Finally, R is not only widespread and completely free of
charge but in addition produces analysis scripts which can be opened by any text
editing software, which contributes to the ideal of openness in science.

We have provided an introductory R tutorial elsewhere,7 but below reiterate the key
points to allow the reader to follow this tutorial independently. For a deeper understand-
ing of the R language, many online materials discuss the use of R in both written (Navarro,
2015; Phillips, 2017; Vuorre, 2016) and video (Phillips, 2015) formats.

Installing R and RStudio

The R programming language can be downloaded for free for Windows, Mac, and Linux
operating systems,8 and installed like any other application. To use the R programming
language, one needs to access it through a console, which is a text-based input-output
interface – the user types in and executes input, the program returns output. The R
console application can be opened like any other application on your computer, after it
has been installed. We show the R console in Figure 4 along with a few simple commands
for saving numbers into a variable and computing their mean. You can type out the com-
mands from Figure 4 on your own computer and execute them by pressing Return (Mac)
or Enter (Windows).

However, the use of R is made significantly easier (and more pleasant, we suggest) by
the popular RStudio (RStudio Team, 2016) Integrated Development Environment (IDE),
which we strongly recommend. RStudio provides many helpful features for conducting
statistical analyses (and more) with the R language, and can be downloaded free for
Windows, Mac, and Linux.9

Figure 4. The R console. This figure shows how to assign (R uses the left arrow, <-, for assignment) all
whole numbers from 0 to 100 to a variable called numbers. Computer code can often be read from
right to left, so the first line here could be read as ‘integers 0 through 100, assign to numbers’. We
then calculated the mean of those numbers by using R’s built in function, mean().

HEALTH PSYCHOLOGY AND BEHAVIORAL MEDICINE 57



Data analyses are saved as scripts

Although R’s data analysis functions, such as loading and transforming data, creating
figures and estimating statistical models, can be written and executed directly in the
console, it is important that you save these commands into scripts. R scripts are
files that contain the functions of a statistical analysis in the order in which they
should be executed. An example R script is shown in Figure 5, where the R script
for doing a t-test between two groups is shown in RStudio’s text editor panel in the
upper left corner. When these lines of the script are executed (move the text cursor
onto the appropriate line and press Command + Return (Mac) or Control + Enter
(Windows)), their output is printed in RStudio’s R console panel (bottom left). What-
ever variables and figures are created in the script will be visible in the upper right and
lower right RStudio panels, respectively. To create an R script, click File → New File →
R Script in RStudio. We suggest you follow this tutorial by typing the commands into a
new R script.

Basic R commands

Figure 4 showed two basic R functions (saving numbers into a variable, computing the
mean of the numbers inside a variable). Figure 5 shows a function to conduct an indepen-
dent samples t-test. All R operations are based on functions, which can be identified by the
fact that they are followed by parentheses (e.g. mean() for computing a mean) and argu-
ments that are entered inside the parentheses (e.g. numbers). In this tutorial, instead of
showing screenshots for each line of R code, we show the code inline, which for Figure 4
would look like this:

Figure 5. RStudio with its text editor and R console (upper and lower left panels, respectively). The
three lines of code saved into the R script ‘t-test-kids-grownups. R’ shows how to save numbers into
variables, and then conduct a t-test between the variables.
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numbers <- 0:100
mean(numbers)
## [1] 50

In the above code listing, the output of the last function is prepended with two #s to
separate it from the input functions, which are not prepended. The R programming
language contains a great number of useful functions, but the true power of R is realized
in user-contributed packages, which contain many more functions to extend R’s function-
ality. To obtain these packages, and their associated functions, users must first install the
packages. In this tutorial, we will illustrate Bayesian data analysis with R functions con-
tained in the brms (Bayesian Regression Models using Stan) package (Bürkner, 2017;
Stan Development Team, 2016a). To install R packages, you simply call the install.-
packages() function in the R console, with the name of the desired package (in quotes)
as the argument10. To start with the tutorial, install the brms package11 by running the
following command:

install.packages("brms")

You should only install packages once. That is, the next time you run this code, you
should not re-install the package, as it will be saved on your computer. Next, you will
need to read the appropriate data file into R’s workspace. There are many functions in
R that read data from files, and we recommend using functions found in the tidyverse
package (Wickham, 2016)12.

To read a data file into an R object that you can use in the current R session, you need to
use a function to read a file on your computer’s hard drive. With this tutorial, we have
provided a data file called motivation.csv. You should place it somewhere where
you can easily find it. Here, we assume that you are writing an R script, and you should
place the data file in the same directory as the R script. Then, assuming that your R
working directory13 is the directory with both these files, you can call the read_csv
() function, and pass the data file’s name as an argument. The first line in the following
code listing loads the tidyverse package’s functions so the read_csv() function is
available.

library(tidyverse)
d <- read_csv("motivation.csv")

d is now an object in the R workspace that you can use for visualization, modeling, and
more.

Bayesian inference in practice

Having introduced the basic concepts of Bayesian inference, we can now apply them in
practice. In summary, a practical Bayesian inference can be thought to consist of five
steps of analysis (Kruschke, 2014), described in Table 1. We now turn to Step one of
Table 1 and describe the data used in this example.
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Step 1: identifying relevant data

The first step of Bayesian data analysis, as it is in any analysis, is to identify the data,
because we wish to infer something about the world based on data. The example data
are illustrated in Table 2, and described in more detail above. This table shows the vari-
ables available to use in the statistical model.

The primary research question relates to the extent to which the intervention causes
changes in autonomous motivation. We, therefore, identify the output variable in the
data as the individuals’ survey responses which relate to autonomous motivation. The
main input variables are intervention (coded as 0 and 1 for the control group and inter-
vention group, respectively) and time (coded as 0 and 1 for baseline and post-intervention,
respectively). Having operationalized the concepts as variables in the data, we can next
define the statistical model.

Step 2: define the statistical model

Our statistical model will consist of defining a likelihood function for the outcomes, which
are the survey responses. For each row i and person j in the dataset, the unique survey
response is denoted as Yij. As is usual for most regression models, we define that the out-
comes follow a Gaussian (i.e. ‘Normal’) distribution with two parameters, m for mean, and
s2 for residual variance. The outcome distribution or the model of the outcomes is14

Yij#
iid
N(mij, s

2),

where the #iid symbol denotes ‘independently and identically distributed’ (in what follows
we drop the iid to simplify notation, but continue to assume it). The next step is defining
the linear model for the parameter(s) of the Gaussian distribution. The most basic model

Table 1. Five conceptual steps of Bayesian data analysis.
Step Procedure

1 Identify data relevant to the research question.
2 Define a descriptive model, whose parameters capture the research question.
3 Specify prior probability distributions on parameters in the model.
4 Update the prior to a posterior distribution using Bayesian inference.
5 Check your model against data, and identify possible problems.

Note: Adapted from Kruschke (2014, p. 25).

Table 2. Data set from example intervention study.
ID intervention item time value

1 1 intrinsic_a 0 5
1 1 intrinsic_b 0 4
1 1 intrinsic_c 0 4
1 1 intrinsic_d 0 4
1 1 identified_a 0 5
1 1 identified_b 0 2

Note: The data are in the standard long format, where each observation (questionnaire
response) is in its own row. This format is expected by the regression equation
(below) and is in contrast to wide-format data where an individual’s repeated measures
are on a single row. Value is the actual numerical response, and the ID and item vari-
ables specify whose response it is and to which specific questionnaire item. Missing
values are indicated by NA.
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would be to model the mean as a linear function of time and intervention. However, this
model would ignore the fact that the Yij are not independent, because each person pro-
vided two observations: The data consist of repeated measures of individuals over time.

The second reason for not using the simple model is the fact that each participant
answered eight survey items. For the example model in this tutorial, we solve the
second complication by averaging the outcome for each person, at each time point,
over the eight different questionnaire items – as is commonly done. However, averaging
is in no way necessary and the model can be easily extended to handle multiple response
scales, but for this introductory tutorial, we do not discuss that extended model.

There are many ways to aggregate data in R, and here we use a common strategy where
summarizing functions are applied to ‘groups’ in the data (Wickham & Francois, 2016). In
the following code listing, we create a new variable called avg by taking the data frame d,
then grouping it by ID, intervention, and time (second line). The effect of this code
is that any following summarizing operations are applied to combinations of these group-
ing factors. The %>% symbol is used to pass results from one line to the following one,
which eschews the need to save intermediate results. The third line calculates the mean
of value for each of the groups defined in line two. na.rm = TRUE means that the
mean should be calculated after removing missing values (if left in, any group with any
missing values would have a missing value as the mean.) The fourth line removes the
grouping information from the data frame.

avg <- d %>%
group_by(ID, intervention, time) %>%
summarize(value = mean(value, na.rm = TRUE)) %>%
ungroup()

The data in this aggregated form is illustrated in Table 3, and we now understand Yij to
mean the average motivation scale response over the 8 items for person j on row i.

Traditionally, to address the fact that the responses are correlated within people across
the two time points, researchers have commonly turned to the repeated-measures
ANOVAmodel. However, we take a more general approach, based on multilevel modeling
(Bolger & Laurenceau, 2013; Gelman & Hill, 2007). Multilevel modeling – sometimes
called hierarchical or linear mixed effects modeling – is an increasingly popular method
for modeling data which consist of non-independent observations, such as repeated
measures in treatment evaluation studies. The key assumption of multilevel modeling is
that the lower-level observations (individual survey responses) are clustered within
upper level units (participants).

Table 3. Data set from example intervention study.
ID intervention time value

1 1 0 4
1 1 1 4
2 1 0 4
2 1 1 4.38
3 1 0 4
3 1 1 4

Note: Data aggregated over the questionnaire items, resulting in two observations per person.
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Multilevel models have many benefits over the traditional rm-ANOVA approach, such
as allowing unbalanced data15, continuous predictors, and categorical outcomes (Bolger &
Laurenceau, 2013; Gelman &Hill, 2007; Jaeger, 2008; McElreath, 2016). Importantly, these
models do not require data to be collapsed to person- or cell-means and thereby allow esti-
mating the extent to which the effects (co)vary in the population of individuals. We, there-
fore, specify a regression model which accounts for the repeated measures by including an
intercept term for every individual (i.e. a ‘varying intercepts model’; Gelman and Hill
(2007)):

mij = aij + bT timeij + bI interventionij + bIT(timeij × interventionij)

This equation shows that we model autonomous motivation on an intercept (α, more
on which later), and regression coefficients for time (bT), intervention group (bI), and
their interaction (bIT). These latter three parameters capture our research questions
about the effects of time and intervention on the response variable, and the difference
of the effect of time between the intervention groups (the interaction term), respectively.
With respect to the research question, we are most interested in bIT , which quantifies the
extent to which the effect of time differs between the two groups. The effect of time for the
control group is defined by bT (because the control group is used as the ‘reference’ group
by coding it as zero). Similarly, bI quantifies the effect of intervention at time 0.

The subscripted aij parameter demands more attention: It reflects J (number of persons
in the study) intercepts, and therefore assigns an intercept to each person j – which are
therefore called ‘varying intercepts’. The person-specific intercepts are modeled as
draws from a distribution:

aj # N(b0, t0)

This latter equation reveals the ‘multilevel’ nature of the model: Each person j’s inter-
cept is assumed to be normally distributed on a mean intercept b0, and the spread of these
intercepts is captured by the standard deviation t0. In other words, we can consider that
there are two levels of intercepts; the person-specific intercepts are draws from an upper
level distribution, whose mean describes the average intercept. In frequentist literature on
multilevel modeling, the average effects (b0) are often known as ‘fixed’ effects, and the
lower- or person-level intercepts are known as ‘random’ effects because they are
assumed to vary randomly as defined by the normal distribution. However, in the Bayesian
framework, it is less meaningful to call only one of these parameters ‘random’ (Gelman &
Hill, 2007, p. 245). Correspondingly, we describe the ‘random’ parameters as varying – for
example, varying between participants – and the ‘fixed’ parameters with their correspond-
ing level of analysis. Here, the ‘fixed’ intercept (b0) refers to the average person’s intercept,
or similarly to the expected intercept in the population, as in frequentist ML modeling.
We, therefore, refer to the ‘fixed’ effects as ‘population-level’ effects.

Step 3: specify prior information

In the Bayesian framework, all parameters which are not themselves modeled are assigned
prior probability distributions16. These ‘priors’ describe the available information about
the parameters before seeing new data. The current model has six unmodeled parameters:
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The four population-level regression coefficients (including the intercept b0), the standard
deviation parameter of the varying intercepts (t0), and the standard deviation of the data
distribution s (which, when squared, is sometimes called the variance of the residuals).

How should researchers specify prior information about the to-be-estimated quantities
of their statistical models? Above, we distinguished between informative and non-infor-
mative priors and discussed how inference may benefit from using priors that gently
guide the inference toward credible values (Gelman et al., 2013; McElreath, 2016).
When defining a prior for estimating intervention effects on the autonomous motivation
for PA among youth, a health psychologist might turn to existing research evidence. This
is a clear advantage over the frequentist approach, where the researcher appears to not
have much clue about the size of the effect based on previous studies that could be con-
sidered in data analysis. In our case, the evidence may inform us that on the whole, school-
based PA interventions among older adolescents result on average in modest effects at best
(Hynynen et al., 2016), and that experimental evidence on self-determination theory-
based interventions has been scarce (Ng et al., 2012; Ryan & Deci, 2017).

Additionally, we would need to rather take into account the evidence of interventions of
similar content, dose, and intensity, with about a similar six weeks of follow-up, which
would correspond closer to our study design, compared to other types of interventions.
Such studies are rare. Hence, we would be advised not to set a highly informative prior.
We, therefore, begin our analysis using minimally informative priors (Kruschke, 2014).

These priors assign credibility to a wide range of parameter values, but have their peak
at zero, reflecting our mild assumption that greater (negative or positive) effects should be
less plausible than ones near zero. For the four regression coefficients, we assign Gaussian
distributions with mean 0 and standard deviation 5, shown in the left panel of Figure 6.
Although the effects cannot be greater than four – because the ratings are made on a
1–5 scale – defining a prior with strict boundaries in addition to the smooth decline of
the Gaussian density is outside the scope of this tutorial (Gelman et al., 2013).

b # N(0, 5).

The prior distribution for the standard deviation of the varying intercepts (t0; middle
panel of Figure 6) assigns maximum a priori probability for zero, and decreasing plausi-
bility toward greater values. This distribution is a positive only Cauchy distribution with
scale 1 (Gelman, 2006). In this case, the prior explicitly reflects our mild a priori
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Figure 6. Prior probability distributions for Model 1 in the tutorial. The left panel shows the prior dis-
tribution which is assigned to all regression coefficients b. Middle panel shows the prior distribution of
the standard deviation parameter of the person-specific intercepts. Right panel shows the prior distri-
bution for the residual standard deviation.
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assumption that smaller values of between-person heterogeneity are more likely than
larger ones.

t0 # Cauchy+(0, 1).

Finally, the right panel of Figure 6 shows a positive only Cauchy with scale 2, which is
used as the prior distribution for the standard deviation of the residuals (s). This distri-
bution is so broad that it has next to no influence on the estimated parameter values.

s # Cauchy+(0, 2).

Step 4: Bayesian inference

After the first three conceptual steps of Bayesian data analysis in Table 1 (Kruschke, 2014),
we can now use Bayesian inference to update the prior distributions to a joint posterior
distribution that describes the plausible parameter values after seeing the data. We have
above described the theory of Bayesian updating, and also noted that for complex pro-
blems with many parameters, analytical (i.e. mathematically exact) solutions might not
be available. We, therefore, turn to computer methods for estimating the model. These
computer methods are available in the R package brms, which we installed above
(Bürkner, 2017). To make the functions of brms available in the current R session, we
need to ‘load’ the package in the beginning of the data analysis script17:

library(brms)

Wemust then translate the mathematical model described above into a form that R can
understand. To do this, we specify the model in R’s modeling syntax (which is extended by
brms to Bayesian regression models).

R modeling syntax
R’s modeling syntax is a powerful language for expressing mathematical models in a form
that can be passed to various functions for estimation. Generally, for response variable(s)
Y, and input variable(s) X, models are written as

Y ∼ X1 + X2 + X1:X2

which can be read as ‘Y is modeled on X1, X2, and their interaction’. The syntax also
allows a shortcut for including the main effects of two variables and their interaction

Y ∼ X1 * X2

which implicitly expands out to include all three predictor terms. The model syntax also
implicitly adds the intercept term, which can be explicitly included with a 1:

Y ∼ 1 + X1 * X2
Finally, we must add the varying coefficients. These are added by a two-sided formula,

whose predictor terms (intercept in the current example) are on the left-hand side of a |,
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and whose grouping terms (participants, identified by variable ID) are on the right hand
side.

Y ∼ X1 * X2 + (1 | ID)

In the previous code listing, the equation in the parentheses means that intercepts (1) vary
between the clusters (participants, as identified with the ID variable in the data). For the
current example model, we specify the model using the appropriate variable names, and
wrap the model formula into brms’ bf() function.

model_1 <- bf(value ∼ 1 + time * intervention + (1 | ID))

model_1 is now an R object that can be passed on to the estimation function. But first, we
specify the prior distributions.

Specifying priors
Next, we introduce how to set priors to the regression model, but readers who wish to esti-
mate the model with brms’ default priors18 can initially skip this section. Given the saved
model object, we can use brms’ helper function get_prior() to show which par-
ameters can be assigned prior densities.

get_prior(model_1, data = avg)

This function returns a table showing which parameters (or groups of parameters) can
be assigned priors (relevant output is shown in Table 4). To assign the prior distributions
discussed in the previous section, we use brms’ function prior() whose first argument
must be an unquoted character string describing a distribution in Stan language (Stan
Development Team, 2016b). For example, the N(0, 5) distributions for the regression
coefficients are defined with

prior_betas <- prior(normal(0, 5), class = "b")

where the class = “b” indicates that this distribution should be assigned as a prior to all
the ‘betas’, or regression coefficients19. The two Cauchy priors for the standard deviation
parameters are created with

prior_tau <- prior(cauchy(0, 1), class = "sd")
prior_sigma <- prior(cauchy(0, 2), class = "sigma")

Table 4. Possible (classes of) parameters that can be assigned priors in the
example model.
Class coef group

b intervention
b time
b time:intervention
Intercept
sigma

Note: Only relevant output shown.
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and we can then combine all these priors into one variable with R’s c() function

prior_1 <- c(prior_betas, prior_tau, prior_sigma)

The object prior_1 now contains all six prior distributions, and can be passed on to
the estimation function.

Fitting the Bayesian model
We have now defined the model’s regression formula, which is saved in model_1, and it’s
associated prior distributions, saved in prior_1. We are therefore ready to estimate the
model. To estimate the model – more technically, to draw samples from the model’s pos-
terior distribution – we use the brm() function:

fit_1 <- brm(model_1, avg, prior = prior_1)

Brms’ brm() is a powerful function whose input arguments are a model formula
(model_1), a data frame (avg), an optional prior definition (prior_1), and various
optional arguments (see ?brm). The function then translates the arguments into a Stan
model and instructs the Rstan package to draw samples from the posterior distribution
(Stan Development Team, 2016a). By default, brm() runs 2000 iterations over four
MCMC chains, and uses the first half of each chain to adjust the underlying algorithm,
resulting in 4000 random draws from the posterior distribution of the model. When
this function is executed, brms will first report that it is compiling a C++ model, which
may take up to a minute for complex models, and then reports on the progress of
drawing samples, and finally produces an object (here saved to fit_1) with all the infor-
mation about the estimated model. This object can then be used in other functions to
output numerical and graphical summaries of the estimated model.

Interpreting the model’s output
To print the estimated parameters of the model in R’s console, you can use the summary
() function:

summary(fit_1)

We first interpret the population-level effects of the output (Table 5). This table reports
the posterior mean and standard deviation (the analogous frequentist quantities are the
parameter’s point estimate and standard error, respectively) for each of the four popu-
lation-level regression coefficients. First, the intercept’s row describes the plausible
values of the motivation response at time 0 and intervention 0 (first time point, control

Table 5. Population-level effects of the estimated model.
Parameter Estimate Est.Error l–95% CI u–95% CI Eff.Sample Rhat

Intercept 4 0 3 4 885 1
Time 0.09 0.15 −0.20 0.38 2247.70 1.00
intervention −0.09 0.26 −0.63 0.44 803.84 1.01
time:intervention 0.10 0.18 −0.27 0.45 2247.06 1.00

Note: Estimate is the posterior mean and Est.Error the posterior standard deviation.
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group) for the average person. Estimate is the mean of the posterior distribution, and
corresponds to the frequentist point estimate: We expect the average person to report a
baseline motivation of 3.69. However, the 95% credible interval (indicated by its lower
and upper bounds) shows that this value could be as low as 3.29 or as high as 4.10.
Est.Error is the standard deviation of the posterior distribution.

Eff.Sample describes the number of efficient samples from the posterior distri-
bution; these are the number of (roughly) independent samples obtained from the distri-
bution, while accounting for their autocorrelation. Rhat is the Rubin–Gelman
convergence diagnostic, and should be 1.00 for accurate estimates of the posterior distri-
bution (Gelman et al., 2013, pp. 285–288).

Next, time describes the plausible values of change in motivation for the control
group. Ninety-five percent of the most plausible values of change are between −0.20
and 0.38: The point estimate of 0.09 is quite small in light of this uncertainty, and we
are therefore unable to conclude with confidence that the control group changed much
between the two time points. The intervention parameter describes the plausible
magnitudes of the intervention’s effect at time 0.

The most important parameter with respect to the research question is the interaction
term time:intervention. This parameter’s point estimate (posterior mean) is small,
and the relatively wide 95% Credible interval, ranging from −0.27 to 0.45 suggests that our
knowledge about the parameter’s location is uncertain. In other words, given the prior
information and the data, we have learned relatively little about the effectiveness of the
intervention, and our uncertainty about the parameter is considerable: We are unable
to assert with confidence that there is a meaningful difference in how the two groups
changed over time.

We have also illustrated the model’s estimated parameters and fitted response values
graphically in Figure 7. The left panel of this figure illustrates the estimated parameters
from Table 5 graphically as (slightly smoothed) probability densities. This figure was
created using the bayesplot package’s (code not shown) mcmc_areas() function
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Figure 7. Left panel: Density curves of the posterior distributions of the four population-level
regression parameters. The shaded area indicates the 95% Credible Interval, and the vertical line indi-
cates the posterior mean. The density curves are estimated from MCMC samples, and slightly smoothed
for the figure. Right panel: Trajectories of change across time for the two intervention groups (blue:
control group, red: intervention group). Each line denotes the posterior mean regression line for
that group, and the surrounding shades are the 95% Credible Intervals for the regression lines. The
code for creating these two figures can be found in the complete code listing for this tutorial.
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(Gabry, 2017). The right panel displays the implications of the model’s posterior distri-
bution in the scale of the data, created with brms’ marginal_effects() function
(code not shown).

Given these numerical estimates (representing the model’s posterior distribution), we are
now in the position to answer the research questions. We asked: ‘To what extent does the
intervention affect autonomous motivation?’ As first pass, we have interpreted the popu-
lation-level effects in Table 5, whose time:intervention parameter described the
current state of knowledge about that parameter: The point estimate was positive, yet
very small in the context of the considerable uncertainty, represented by the bounds of
the 95% credible interval. In sum, this estimated parameter suggested to us that there was
not much difference in how the two groups changed across time. However, note that
there is no parameter describing the magnitude of change in the intervention group.

Fortunately, the matrix of posterior samples represents a joint posterior probability dis-
tribution, andwe can use it to create posterior distributions for quantities that answer further
questions. More specifically, we need to obtain the posterior distribution of d = bT + bIT ,
which quantifies the rate of autonomous motivation’s change over time for the intervention
group. This can be simply calculated from the posterior samples (see Table 6).

This quantity of interest d can now be summarized and visualized for drawing inference
about the magnitude of time’s effect in the intervention group. Although we could not con-
clude with confidence that the control and intervention groups changed differently over
time, we may still be interested in the intervention group’s magnitude of change. To
address this question, we repeat the left panel of Figure 7 in Figure 8: The bottom row of
this figure (‘delta’) shows the posterior distribution of the intervention group’s change
over time, which appearsmodest (the point estimate, posteriormean, is 0.18). Additionally,
this modest value is qualified by relatively great uncertainty, which is represented by the
spread of the posterior distribution (the 95% credible interval is [−0.04, 0.41]).

We can also calculate the proportion of the posterior density that is above zero to
approximate the posterior probability that the effect is positive.20 The answer turns out
to be that 95.40% of the density lies above zero, and we can therefore assert 95.40% confi-
dence that the effect is positive. This posterior probability is numerically analogous to the
frequentist one sided p-value (Marsman & Wagenmakers, 2016), but notice that we can
directly interpret the posterior probability as asserting confidence, or subjective probability,
in the sign of the parameter.We should not, however, interpret this value as quantifying the
evidence for, or probability of, a quantitative hypothesis about the data – such questions are
better answered by Bayes Factors, which are outside the scope of this tutorial.

Table 6. First six rows of random samples from the posterior distribution of
the model’s population-level effects.
b_Intercept b_time b_intervention b_time:intervention delta

3.80 0.11 −0.44 0.05 0.16
3.47 0.35 −0.09 −0.14 0.21
3.39 0.34 −0.05 −0.02 0.32
3.48 0.04 0.15 0.08 0.11
3.29 0.27 0.31 0.01 0.28
3.40 0.13 0.20 −0.14 0.00

Note: The samples are obtained from the MCMC sampling procedure. Delta is the pos-
terior distribution of the effect of time in the intervention group, which is the sum of
b_time and b_time:intervention.
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Assessing the computational algorithm’s performance
In many applications of Bayesian statistics, such as one discussed here, the model’s posterior
distribution is not analytically calculated, but rather approximated by an MCMC algorithm.
Technical details of this algorithm are outside the scope of the current article (see Kruschke
(2014); Ravenzwaaij et al. (2016)), but users should be familiar enough with it to assess
whether the posterior approximation through MCMC sampling is adequate.

A ‘chain’ of MCMC draws is a random sequence of samples from the model’s posterior
distribution. By default, the software used here returns four chains of 2000 samples each.
Four chains are almost always adequate, but users may wish to increase the default number
of samples for some applications. The first half of each chain is used to adjust the behavior
of the sampler and is automatically discarded before the results are displayed. There are
many methods for assessing the chains’ ‘convergence’ (the representativeness of the
random sample), here we highlight two. First, as noted before, the Rhat quantity in the
model’s summary output should be very close to 1. Values different from 1 suggest that
more samples should be drawn from the posterior distribution.

Another method of monitoring convergence focuses on visual inspection of the MCMC
chains: The four chains of samples should look highly similar to one another, if they all are
representative samples from the true posterior distribution. Figure 9 shows a ‘traceplot’: A
visual representation of the fourMCMCchains of samples from themodel’s intercept’s pos-
terior distribution. The four chains look highly similar, reassuring us of good performance.
Dissimilar chains suggest that further investigation into themodel’s performance is needed.

Step 5: model checking

The goal of model checking is simple: After a model has been estimated, the modeler
should ensure that the model captures the important features of the data, and that reason-
able inference can be drawn. This process is analogous to that of all modeling endeavors:
Colloquially, the model should ‘fit’ the data well. The topic of model checking is broad, and
here we advocate and illustrate graphical model checking in the form of posterior predic-
tive checks (Gelman et al., 2013, p. 143).
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Figure 8. Posterior distributions of the three main population-level regression coefficients, and the
transformed parameter d (delta), which denotes the effect of time in the intervention group only.
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Posterior predictive checks allow assessing whether the model’s predicted values are
similar to the actual data. If the model fits the data well, the model’s predicted values and
the data would look similar. brms provides helper functions for performing graphical
checks (Bürkner, 2017; Gabry, 2017), which we use here. Although a complete review of
this topic is beyond the scope of this paper, in Figure 10 we graphically compare the
density of the data (y) to densities of 100 datasets that are simulated from the model (yrep).

Although this figure doesn’t suggest serious problems with the model, we can see room
for improvement. For one, we can see that because we have not included information about
the natural limits of the data, the model’s replicated datasets suggest that values above 5 are
possible. The model could be expanded to include this information. Additionally, we could
have instead modeled the raw discrete ratings as an ordered variable, instead of modeling
the averaged responses as a continuous variable, but this topic is outside the scope of this
tutorial. However, these assumptions are common to many regression models which do
not explicitly specify the data limits, or use aggregated responses instead of raw ordered
categories, such as common ANOVA methods. Solutions and software are described in
Saarela (2017), Saarela and Arjas (2015), and Bürkner and Vuorre (2018). We also show
how to analyze the raw data with an ordinal logistic regression using brms in the Appendix.

2 3 4 5 6
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Figure 10. Graphical comparison of the actual data set to replicated data sets should reveal a very
similar shape of the densities, if the model fits the data well. Here, we do not see serious problems
with how the model seems to replicate the data (but note that we have not taken into account the
natural 1–5 limits of the response scale, or that the raw responses are ordered categories).
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Figure 9. Traceplot of the model’s intercept. Each of the four chains is plotted in a different hue. The
posterior samples (x-axis) are connected with a line; y-axis are the samples’ values. The four chains’
traces look highly similar, suggesting to us that the MCMC approximation has worked well. If the
chains looked very dissimilar, we would be prompted to further investigate the model’s performance.
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In sum, based on the steps presented, the results of the estimation are as follows: given
the model and the data, it is fairly unlikely that the intervention has an unintended nega-
tive impact on autonomous motivation. Furthermore, even quite large effects are plausible,
but there is vast uncertainty regarding the effect, due to the small number of participants
in this feasibility study.

Summary of practical tutorial

In the above tutorial, we covered the five conceptual steps of Bayesian data analysis (Table 1;
Kruschke (2014)). We hope to have shown that this extremely powerful and flexible probabil-
istic approach to statistical modeling is now available and relatively easy to start applying
through the easy-to-use R interface to the Stan modeling language, brms (Bürkner, 2017;
Stan Development Team, 2016a). The brms R package allows specifying models and priors
for a wide range of models, from simple comparisons of two groups to more complicated
multilevel analyses. Importantly, the flexible Bayesian approach brings with it the benefits
of the Bayesian framework, highlighted above in our discussion about Bayesian inference.

Ethics Statement

The study protocol was reviewed by an Ethics Committee of the Hospital District of
Helsinki and Uusimaa (Decision number 249/13/03/03/2011). Participants were treated
according to principles of the Helsinki Declaration, and were informed about their
right to withdraw from the study at any point.

Conclusions and recommendations

The aim of this tutorial article was to provide a brief overview of the Bayesian approach for
beginners, accompanied by a hands-on demonstration of Bayesian methods and reasoning
regarding intervention effects, using a small intervention study dataset with intervention
and control arms. We have attempted to avoid overselling the approach and would like to
emphasize that researchers should carefully consider what their objective – what they want
to know or do – is, prior to choosing a suitable methodological approach. For example, a
researcher may aim to control for long-run error rates of decisions. It may then be acceptable
to use modern frequentist hypothesis testing (see Haig, 2016 for an approachable introduc-
tion) for differences in outcomes, between randomly assigned participants in treatment
and control groups. Note that researchers still ought to be able to justify e.g. their alpha
levels, instead of using same conventions for all situations (see Lakens et al., 2017).

One of the main advantages of the Bayesian approach to intervention evaluation is that
it more fully makes use of all available information, including in the form of prior distri-
butions. The prior distributions also function as an intuitive way to regularize inferences,
in order to avoid overfitting. In general, Bayesian modelling encourages the researchers to
explicate many assumptions behind the analysis, allowing for more thoughtful and
thorough inferences. As pointed out in the introduction, major advantages become appar-
ent in more complex models than the current, minimal pedagogical example.

Criticisms for adopting (exclusively) Bayesian inference have been voiced, too. Among
the most prominent critics, a leading frequentist philosopher of statistics Deborah Mayo
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cautions against abandoning the error statistical approach to testing, which accommodates
for a comprehensive model of cumulating knowledge from experiments (Mayo, 1996,
2013a, 2013b). One such criticism is that without an error statistical framework, it is dif-
ficult to evaluate how severely a claim has been tested. Readers interested in learning more
of possible risks of a fully Bayesian philosophy of science may find Mayo (2018) useful.

Pitfalls and risks for aspiring Bayesians are presented in the ‘When to worry and how to
Avoid the Misuse of Bayesian Statistics’ (WAMBS) checklist (Depaoli & van de Schoot,
2017), which we encourage embracing. In crude summary, researchers should understand
how sensitive their models are to changes in assumptions, including priors. For this reason,
transparent documenting and reporting of the research process, including sharing the
analysis code for reproducible reports, is crucial for evaluating results. In the age of practi-
cally unlimited free space for supplementary files21 in e.g. the Open Science Framework
website (http://osf.io), we strongly urge researchers to make use of such repositories.

Scientific thinking is crucial when health psychologists add Bayesian tools to their toolbox
of statistical methods. There will be no universal, nor automatic, method to answer all infer-
ential needs (Gigerenzer & Marewski, 2015). We urge researchers in the field to consider
their research questions thoroughly (see e.g. Hand (1994) for advice) and investigate
whether the conventional methods really provide them with the answers they are looking for.

Notes

1. Note how we do not find e.g. the probability of being wrong, or the hypothesis being false, or
the probability of getting the same result in a replication study (Gigerenzer, 2004; Wasser-
stein & Lazar, 2016).

2. These parameters mean the same as in classical statistics. They work like control knobs for
adjusting the heat of an oven or the volume of loudspeakers. For example, a normal distri-
bution’s position on the x-axis is controlled by the parameter mean, and the spread by the
parameter standard deviation.

3. See http://rpsychologist.com/d3/bayes/ for an interactive visualization of the interplay
between the prior, likelihood and posterior.

4. The mean group difference divided by the standard deviation of the difference. See http://
rpsychologist.com/d3/cohend/ for a visualization.

5. A Cauchy looks like the normal, but has thicker tails. Centered on zero with a scale parameter
of 0.5, it would consider 50% of effects to be within 0.5 of zero, and the rest to be more
extreme – possibly very extreme, as the probability of drastic effects such as d = 10 never
becomes so small that they could be considered practically impossible.

6. An accessible intro to the intricacies of likelihood is found in Etz (2017)
7. See http://blog.efpsa.org/2016/12/05/introduction-to-data-analysis-using-r/ for a compre-

hensive introduction to the basics of using R and R Studio.
8. https://cran.r-project.org/.
9. https://www.rstudio.com/.
10. The function will automatically install the desired R package to an appropriate system folder

on your computer. However, some users—especially on shared university computers, for
example—may not have the rights to write to system folders. If, when trying to install
packages with this command, R returns an error saying that there are no rights to write
into the system folder, you can run the function with the lib argument, specifying the
folder where the packages should be installed. For example, install.packages
("brms", lib = "C:/Users/example_user/Documents/Rpackages").

11. This function should install the brms package and all the software that it depends on.
However, some users may need to also install a C++ toolchain. Detailed instructions for
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Mac and Linux users can be found at the official Stan documentation website (https://github.
com/stan-dev/rstan/wiki/Installing-RStan-on-Mac-or-Linux#toolchain). Windows users will
find equivalent instructions at https://github.com/stan-dev/rstan/wiki/Installing-RStan-on-
Windows#toolchain.

12. To install this package, call install.packages("tidyverse").
13. Use R Studio’s “Files” panel to navigate to the folder on your computer that contains the R

script and data file. Then click “More” -> “Set as Working Directory”.
14. Many readers might be more familiar with the equivalent “error-centric” representation of

this model: Yij = mij + 1ij, where the “errors” are normally distributed 1ij # N(0, s2).
15. For example, in a traditional ANOVA, if a participant provided a response in the first time

point but not the second, that participant’s data would be discarded. In a multilevel model,
the participant’s single observation can be used to inform the group’s estimate at the first
time point. Additionally, the participant will have an estimated effect of the pre-post differ-
ence, equal to the group mean effect.

16. Notice that the N(b0, t0) is a prior distribution for the person-level intercepts, whose par-
ameters are themselves estimated from the data (but are also assigned “hyper”priors). For
this reason, the person-specific intercepts are sometimes called empirical Bayes estimates.

17. If you installed R packages to a custom location, you also need to instruct the library()
function to use the custom location (for example, library(brms, lib = "C:/Users/
example_user/Documents/Rpackages")).

18. These priors are non-informative and only exist to help the underlying MCMC algorithms.
For most purposes, they can be ignored.

19. For this tutorial, we ignore that brms specifies the intercept slightly differently. See ?set_-
prior for details.

20. More precisely, we approximate this from the MCMC samples by taking the proportion of
samples from this parameter’s posterior distribution that are greater than zero.

21. Full source code for this reproducible manuscript, including all plots, is found at https://doi.
org/10.5281/zenodo.1209814.
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Appendix

Code for Figure 7

library(bayesplot)
library(papaja)
library(gridExtra)
color_scheme_set("gray")
fixef <- posterior_samples(fit_1, "b")
ppars <- mcmc_areas(fixef, adjust = 1, prob = .95) +

labs(x = "Parameter value") +
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theme_apa(base_size = 9)
X <- list(intervention = setNames(0:1, c("Control", "Treatment")))
me <- marginal_effects(fit_1,

effects = "time:intervention",
int_conditions = X,
method = "fitted")

pfits <- plot(me, plot = F)[[1]] +
scale_color_brewer(palette = "Set1") +
scale_fill_brewer(palette = "Set1") +
coord_cartesian(ylim = c(2, 5)) +
scale_x_continuous("Time", breaks = 0:1) +
labs(y="Fitted motivation") +
theme_apa(base_size = 9) +
theme(legend.position = "none",

axis.line = element_line())
grid.arrange(ppars, pfits, nrow=1)

Code for Figure 10

pp_check(fit_1, nsamples = 100)

Ordinal logistic model

In the main manuscript, we describe how to model the data assuming Gaussian outcomes. Another,
perhaps more appropriate model would be to treat the outcomes (ratings) as discrete 1–5 ratings
(Bürkner & Vuorre, 2018). In the main text, we avoided this model because it is less familiar
and more complicated to interpret, but present the code here for interested readers. Notice that
the model is fit to raw responses, and not averaged across rating items. Therefore we also add
varying intercepts for items.

fit_2 <- brm(value ∼ time*intervention + (time|ID) + (1|item),
family = cumulative(link="logit"), cores = 4, data = d)

summary(fit_2)

pp_check(fit_2, nsamples = 100)

1 2 3 4 5

y
yrep

Figure A1. Posterior predictive check for the ordinal logistic model.
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